
CONIA: CONTENT (PROVIDER)-ORIENTED, NAMESPACE-INDEPENDENT
ARCHITECTURE FOR MULTIMEDIA INFORMATION DELIVERY

Eman Ramadan, Arvind Narayanan, Zhi-Li Zhang

Department of Computer Science and Engineering,
University of Minnesota, Minneapolis, USA

{eman, arvind, zhzhang}@cs.umn.edu

ABSTRACT
We propose and present CONIA, a novel content (provider)-
oriented, namespace-independent architecture for multime-
dia information delivery. CONIA is designed specifically to
account for the diversity and complexity of multimedia con-
tent, and to recognize the prominent roles of content providers
(CPs) in the network economics of content delivery. In this
paper, we provide an overview of the content delivery archi-
tecture of CONIA and outline the basic functions of its key
components. Using several use cases, we illustrate the flexi-
bility of CONIA in allowing for CPs to employ various control
policies to dynamically handle user demands and meet users’
quality-of-experience expectations.

1. INTRODUCTION

With increasing popularity of multimedia content (especially
video), recent years have seen the emergence and rapid expan-
sion of large-scale content delivery systems such as YouTube,
Netflix, and Hulu. It is reported [1] that Netflix alone con-
sumed nearly a third of the peak downstream traffic in North
America in 2014. Due to the enormous burden placed on
the network substrate, online multimedia (in particular, video)
streaming services have become a major driver that shapes the
evolution of the Internet, with ever expanding roles of content
distribution networks (CDNs) – whether operated by content
providers themselves (e.g., Google/YouTube), ISPs (so-called
Telco CDNs) or third-party CDN providers (e.g., Akamai and
Limelight) – and a “flatter” Internet interconnection structure.

The complexity involved in building and operating a
large-scale content distribution system in today’s Internet
(see, e.g., [2, 3, 4]) to handle user demands and meet the
user desired quality-of-experience (QoE) also highlights some
of the key limitations of today’s Internet architecture. To
partly address these limitations, alternative architectures for a
content-centric or information-centric networks (ICNs) have
been proposed. Arguably the best-known example is the
NDN (Named Data Network) architecture [5, 6] which adopts
a hierarchical namespace for direct “in-network” content

978-1-4799-7082-7/15/$31.00 c©2015 IEEE

query and delivery. There are a number of other architectural
designs such as DONA [7] which adopts a flat namespace;
see [8] for a survey of representative information-centric net-
work (ICN) architectures. There are two basic tenets under-
lying all ICN designs: (i) content is the first-class object that
can be directly named and routed; and (ii) content storage
should be part of the network substrate (either in part or all of
network switching or routing elements). Various existing ICN
proposals differ in how namespaces are designed (e.g., flat vs.
hierarchical) and how content is queried and delivered.

Deviating from existing ICN proposals, in this paper,
we propose and advocate a content (provider)-oriented,
namespace-independent network architecture (CONIA in
short) which is designed in particular to account for the com-
plexity involved in multimedia content delivery. While up-
holding the two basic tenets in ICN designs stated above, we
also put forth the following maxim: to enable a scalable, ro-
bust, economically viable, and evolvable ICN architecture,
one must not dictate how the namespace for content is de-
signed. Our design is motivated by several key considera-
tions: 1) We recognize that there is a vast array of diverse
content types; no single namespace (whether flat or hierar-
chical) or schema can fit it all. 2) Unlike a physical host (or
rather a network interface), a piece of content – in particu-
lar, multimedia content – is in general a complex, compos-
ite logical object with many constituent objects (composite
or otherwise), some of which may be dynamically composed
on demand. For example, a movie that a user is interested in
is comprised of both video and audio components which are
often segmented in various segments encoded in different bi-
trates; it may also include closed-captions in a language that
the user selects. 3) We also recognize the prominent roles
of content providers (CPs in short) in provisioning and dis-
tributing content in any ICN, these include their needs for
managing digital rights, controlling user accesses, and han-
dling other content delivery issues. 4) Closely related to 3),
ICNs must take into account the network economics of con-
tent delivery so as to be economically viable. The confluence
of these and other considerations leads us to argue that it is
imperative to afford CPs the flexibility in determining their

own naming schemas for diverse types of content and in em-
ploying appropriate content management policies and control
logic (e.g., caching & load balancing policies) to dynamically
handle user demands so as to best meet user QoE expecta-
tions.

We show that the namespace independence maxim we
promulgate need not be in conflict with the two basic tenets
of ICNs by outlining the basic design of CONIA. In our de-
sign, we explicitly separate two major functionalities (or di-
mensions) of any ICN: content discovery vs. content deliv-
ery (see Section 2 for more discussion). Due to space limita-
tion, this short paper focuses primarily on the content deliv-
ery dimension which is concerned with delivery of a specific
piece of content upon a user request. In CONIA, a CP is af-
forded with the autonomy of specifying its own content name
schemas as well as the capabilities of dynamically installing
appropriate (content) control logic in content store and rout-
ing (CSR) elements in the network substrate and supplying a
Content Map to the content player at the client/user side for
content request and delivery. In a sense, CONIA provides a
software-defined paradigm for content distribution with con-
trol residing at each CP. In Section 2, we provide an overview
of CONIA’s content delivery architecture, and in Section 3,
we highlight the key functions of (generic and namespace-
independent) CSR network elements and outline the basics of
an open control framework (with standardized APIs) needed
for CP controllers to install content control logic and Content
Maps and for the communications between various entities
involved. In Section 4, we illustrate the flexibility of CONIA
via a few use cases in dynamically handling cache manage-
ment and content adaptation, and coping with changes and
surges in user demands. Related work is briefly discussed in
Section 5 and Section 6 concludes the paper.

2. OVERVIEW OF AND CASE FOR CONIA

In CONIA, we explicitly separate the content discovery di-
mension from the content delivery dimension. Different sets
of content namespaces or schemas are likely needed to real-
ize the functionalities of these two dimensions. During the
content discovery process, a user often does not know the ex-
act content1 (or its name) that she is interested in; instead
she will issue a search query with a set of keywords and at-
tributes. This results in a list of content returned to the user in
the form of, say, {content-provider-id, content-name,

price, credentials, ...} . From this list, she selects a

1In this paper, we use the term (a piece of) content to denote what a user
is actually interested in, such as a movie or a TV show episode, while we use
the term objects to denote units of data (of varying sizes, formats or types)
which constitute the content and are to be delivered to the user, such as video
or audio segments encoded in different rates or languages. An object can be
composed of other (smaller) objects and each object has its own name (object
id). Each CP has the freedom to decide how a piece of content is decomposed
into various objects, and how they are encoded and named by specifying a
name schema for the content.

CP Controller A

CP Controller B

Client Content Player

CSR

CSR

CP A’s CSR
CP B’s CSR
Unused CSR

Fig. 1. A Schematic Illustration of the CONIA Content Deliv-
ery Architecture

content provider (CP) based on her credentials (e.g., whether
a subscriber or not), price, and other considerations. To obtain
the content she is interested in, the user submits a request us-
ing the content name learned from content discovery to the se-
lected CP (or rather, a content controller of the CP, see below);
thereafter the content delivery process commences. Due to
the space limitation, the remainder of the paper will focus on
the functionalities needed for realizing the (content-provider-
specific) content delivery dimension. We remark here that
the content discovery dimension may be realized using ei-
ther a “centralized” search engine framework (a la Google),
a collection of “hierarchically distributed” publish-subscribe
systems organized in a similar fashion as today’s DNS, or a
purely “peer-to-peer” service using DHT (distributed hash ta-
ble). A more in-depth exploration of these topics will be left
to a longer version of the paper.

Figure 1 provides a schematic illustration of the CP-
oriented content delivery architecture in CONIA, which con-
sists of three key components – CP controllers, content store
and routing network elements (CSRs in short), and content
players at the client side – as well as an open control frame-
work with standardized APIs for managing the interactions
among the components. One premise of our design is that as
part of the (global) network substrate, CSRs are generic (i.e.,
independent of CPs) and shared content delivery resources
that may be owned by ISPs and enterprise networks, third-
party entities (e.g., CSR providers similar to today’s CDN
providers, communities or users), or CPs themselves, and can
be procured by any CP (either a priori or on-demand) for its
content delivery.

Each CP is responsible to define and specify its own
namespace and content-specific name schemas, and deploy
one or multiple controllers for managing the content deliv-
ery by installing appropriate control logic in a selected set of
CSRs that are used for the delivery of the constituent objects
for each piece of content that users are interested in. Upon re-
ceiving a content request (or an interest message) from a user,
a CP controller responds by supplying a Content Map (similar
to Media Presentation Description (MPD) defined by MPEG-
DASH [9]) to the content player at the client side, which is
used to direct object requests to appropriate CSR resources

(say, those closer to the user), parse and render the objects re-
ceived. Each CSR maintains a table of content control logic
installed by each CP, which is expressed in a declarative lan-
guage (see, e.g., [10]), looks up and applies the correspond-
ing control logic for each object request it receives. CP con-
trollers, CSRs, and client content players communicate and
interact with each other using a common open control frame-
work with standardized APIs. In Section 3, we outline some
of the basic functions of these key architectural components.

In summary, CONIA is designed specifically to account
for the diversity and complexity of multimedia content, and
to recognize the prominent roles of CPs in the network eco-
nomics of content delivery. It affords each CP the autonomy
and flexibility in specifying its own content schemas and in-
stalling control logic in CSRs to effectively exert appropriate
cache management, load balancing, and other control strate-
gies so as to dynamically adapt to user demands and optimize
how content is delivered to meet users’ QoE expectations (see
Section 4). By separating the content discovery dimension
from the content delivery dimension, CONIA allows for dif-
ferent content discovery platforms and providers to co-exist
and compete with each other, while at the same time also
creates a marketplace for multiple CPs to compete for con-
tent delivery. It also enables new business models between
CPs and network substrate providers, and offer incentives for
ISPs and other entities to deploy and operate CSRs to meet
growing user demands for content. However, addressing the
network economics issues is beyond the scope of this paper.

3. DESIGN OF KEY CONIA CONTENT DELIVERY
COMPONENTS

In this section, we outline the design of key CONIA content
delivery components and the open control framework, focus-
ing in particular on the basic functions of the generic content
store and routing (CSR) network elements.

3.1. CP Content Delivery Controller

In CONIA, a CP is in charge of managing the content deliv-
ery process via its content delivery controllers (in short, CP
controllers). A CP controller defines namespace for objects,
assigns name for each individual object used in content deliv-
ery process, specifies packet header format, determines how
header fields are matched (i.e., prefix, exact or ternary match-
ing), and decides the control logic used to handle and forward
requests and data.

A CP controller maintains a global view of the network,
controls and manages CSRs, and makes decisions driving
caching and forwarding behavior. The global view of the
network consists of: where each object is stored (i.e., which
CSRs), client request patterns and topological view of the net-
work (i.e., locations of CSRs and how they are connected to
each other and to clients). A CP controller also keeps in-

formation about CSRs and their available resources such as:
storage capacity, bandwidth, location, etc.

Based on the global view, a CP controller proactively
caches objects at CSRs and directs client request to the closest
copy of the requested object. For each object, CONIA intro-
duces the concept of a Content Delivery Swarm (CDS). CDS
is an object-specific view of the overall topology revealing all
CSRs that cache this object and understand its namespace.

A CP controller uses the CDS of an object to dynamically
generate a custom Content Map (CM) file for each client re-
questing this object. A CM file of an object has two com-
ponents: 1) a namespace which describes the segment-level
composition of the object, 2) a mapping between the segments
and CSRs caching them.

A CM file generation is based on several parameters like:
client’s location, bandwidth and location of CSRs caching the
segments of the requested object, etc. Dynamic generation of
CM files leads to different object-segment-client-CSR map-
pings which allows dynamic adaptation to various situations.
For example, in case a CSR fails serving a client, the client
may report the failure to a CP controller and in response the
CP controller can generate a new CM file. The client can
now resume downloading the object from the newly specified
CSRs.

A CP controller analyzes statistics reported by differ-
ent components of the system to make key strategic deci-
sions like: “what to cache”, “where to cache”, and “how
to map clients to CSRs”. A CP controller forces these deci-
sions by configuring/modifying the caching and forwarding
behavior of CSRs. This allows CSRs to dynamically adapt
to the changing network conditions and client request pat-
terns. Moreover, this helps achieve CP specific objectives
such as: minimizing latency for clients, maintaining load of
each CSR/link to be below a certain threshold, etc.

A CP controller uses two basic control framework APIs to
interact with CSRs and Clients: 1) pushes objects and control
logic to CSRs, and 2) sends Content Map files to clients.

3.2. Content Store and Routing (CSR) Elements

As part of the network substrate, CSRs are generic and shared
content delivery resources used by CPs for their content de-
livery. Each CSR maintains a Content Control Logic Table
(CCLT) installed by each CP, in which the control logic is ex-
pressed in a declarative language [10], looks up and applies
the corresponding control logic for each object request it re-
ceives. Next, we describe one possible way to specify the
control logic to illustrate what is possible.

An entry in a CCLT has three fields: i) object ID which
identifies a certain object , ii) a set of declarative rules to be
applied to this object, and iii) statistics which keep track of
processed requests and data messages related to this object.

Each declarative rule consists of a predicate and a set
of corresponding actions. A predicate is a set of condi-

Table 1. CCLT Example
obj x :
[′NOT CACHED′]⇒ forward(select([A1, A2], ′LOAD′))

[′CACHED′]⇒
{

select rate(′BW ′) ∧ r ∈ c : reply
select rate(′BW ′) ∧ r /∈ c : trcode(r), reply

BW: bandwidth, r: selected rate, c: cached, trcode: transcode

obj y:
[hit ctr > thresh1 ∧ ′NOT CACHED′]⇒ cache

all objects:
[CSR load > thresh2]⇒ push([B1, B2, B3], popular objects)

default:
[]⇒ forward to controller(message)

tions which specify a context. There are two types of con-
texts: content-related and system-related. Content-related
context describes the state of an object such as: 1) an object is
cached locally or not, 2) a data object is forwarded to a client
through the current CSR, and 3) an object becomes popular
which means within a specified time interval it is requested
more than N times, where N is a threshold specified by CPs.
System-related context describes the state of CSRs and net-
work conditions such as: 1) load on CSR, 2) link load be-
tween CSRs, and 3) available bandwidth between CSRs and
clients. Actions include: 1) forward request to other CSRs or
controller, 2) drop request, 3) push objects to other CSRs, and
4) forward data to clients. The execution of some actions may
involve some local decisions to be made by CSRs according
to system-related context determined by measurements and
statistics received from other CSRs.

For example, the rule which allows a CSR to forward an
object request not cached to other CSRs is the following:
[′NOT CACHED′]⇒ forward(select([A1, A2], ′LOAD′))

In this example, the content-related context is: object is not
cached, the action is: forward the request to CSR A1 or A2,
the logic in the forwarding action is: select one of the CSRs
based on their load, where load is a system-related context.

Table 1 shows more examples of possible rules. 1) Be-
fore sending a video object to a client, a CSR may actively
adapt it to a certain bitrate calculated according to the avail-
able bandwidth. If the calculated bitrate is not in the cache, it
will transcode it. 2) If a CSR is overloaded, it can push some
popular objects to other CSRs (an example of a rule defined
for multiple objects). 3) All objects which do not otherwise
match any rule will match a default rule (see the last rule).

In summary, for each request or data message received by
a CSR, it does the following: 1) identifies the object ID, 2)
determines the context, 3) finds the control logic (rule) de-
fined for this object and context, 4) executes the actions of
the matched rule, and 5) updates the statistics of the matched
rule. A CSR uses four basic control framework APIs to in-
teract with other CSRs, CP controllers, and clients: 1) sends
health information to other CSRs; 2) pushes objects to other
CSRs to cache them, 3) reports statistics to a CP controller,
and 4) sends data to clients.

3.3. Client Content Player

A client content player is a piece of (media-specific) software
similar to a web browser, music or video player (e.g., the Real
player or Netflix app). It renders and displays content it re-
ceives. Given a piece of content that a user is interested in
(learned via the content discovery process), the client content
player sends a content request (i.e., an interest message) to
a CP controller and receives a Content Map (CM) in return.
The CM not only provides the name schema to help the client
content player parse and render various constituent objects of
the content it receives (similar to what an HTML file does to
a web browser or what an MPD manifest file does to a Netflix
video player), but also tells the client content player where
(e.g., a sets of close-by CSRs) to fetch by sending individual
object requests to these CSRs.

The client content player also collects and reports rele-
vant statistics to the CP controller (e.g., performance it ex-
periences in fetching various objects), and the CP controller
may dynamically update or issue a new CM to the content
player, e.g., with a new set of CSRs to bypass overloaded or
failed CSRs. This dynamic adaptation allows the CP to adapt
to changing network and system conditions, thereby enhanc-
ing the QoE perceived by clients. According to the control
logic embedded in the CM, the content player can choose one
of the suggested CSRs with the best performance, or fetch the
same object from multiple CSRs concurrently.

The client content player uses three basic control frame-
work APIs to interact with CPs and CSRs: 1) sends an interest
message with a specified content name to a CP controller; 2)
reports statistics to a CP controller, and 3) sends an object
request with a given object id to fetch the object from a CSR.

4. USE CASES

In this section, we provide a few use cases to illustrate how
CONIA allows a CP to employ various control policies to
dynamically adapt to user demands and optimize its content
delivery to meet user QoE expectations. As discussed be-
fore, CONIA enables a CP to provision a set of CSRs to
form a Content Delivery Swarm (CDS), see Figure 2, for de-
livery of a piece of content, say, a video v1, to a group of
users/clients. For simplicity, suppose v1 consists of several
segments s1, s2, ..., and v1’s CDS initially consists of three
level-1 CSRs B1, B2, B3, which are connected to two level-2
CSRs A1, A2. Clients (c1, c2, ..., cn) are interested in view-
ing v1 initially. Note that CSRs, A3, B4, etc. in Figure 2
are not part of the initial CDS. We shall introduce them later
in this section. We will refer to step numbers annotated in
Figure 2 to help understand the use cases discussed below.
A Simple Use-Case: c1 shows interest in viewing a video ob-
ject named v1 (step 1.1). A CP controller receives this interest
message. Since CP has the overall global view (or CDS) for
v1, it responds with a dynamically generated Content Map

st
ep

 1
.1

 -
in

te
re

st
 fo

r v
1

st
ep

 1
.2

 -
 re

pl
y

w
ith

 C
on

te
nt

 M
ap

 o
f v

1

Step 3.2 – Push v1

…..#

A1 A2

B1 B2 B3

st
ep

 2
.2

 –
 fo

rw
ar

d

re
qu

es
t s

1

st
ep

 2
.3

 –
 s 1

da
ta

Alternate path for steps 2.2 and 2.3

Step 3.1 – Many users show interest in
 v1 and request its chunks

Step 4 – Expand v1’s CDS

B4

A3

CP Controller load on CSR A1

c1

c2 cn

cn+1

cn+m
Content Map of v1

CDS v1

CDS v1
⌃

Fig. 2. A content distribution swarm (CDS) for video “v1”

(CM) file to c1 (step 1.2). This file contains the structure
and composition of v1, segment-level location information,
and other meta-data defined by the CP controller. c1’s con-
tent player, a software provided by the CP, can interpret the
Content Map file. Using this file, c1 sends request for s1 to
CSR B1 (step 2.1). On receiving the request, B1 performs a
lookup operation in its Content Control Logic Table (CCLT)
for s1. Recall, this look up operation is part of the control
logic, which is part of every CSR. B1 understands that s1 is
not cached and should forward the request to a level-2 CSR
(A1 or A2). In other words, for s1 and content-related context
as “NOT CACHED”, CCTL specifies an action to forward
the request to CSR A1 or CSR A2 (similar to rules shown in
Table 1 for obj x). Now, B1 needs to choose one of the two
CSRs. Considering a simple approach for this use case, B1
randomly selects a CSR, say A1, forwards the request to it
(step 2.2), and in response gets the required data (step 2.3).
Load-aware Forwarding: In the previous approach, B1 did
not make a conscious effort in deciding whether to forward
c1’s request to CSR A1 or CSR A2. A random approach
may not always be desirable. For example, if A1 is over-
loaded or the link conditions between B1 and A1 deteriorate,
B1 could have forwarded it to A2, which at that point of time
was the desirable choice. Hence, we use our notion of system-
related context, where using the control framework API, dif-
ferent components communicate with each other to help in-
dividual components (like CSR) make better decisions. We
do not explicitly show this communication in Figure 2, how-
ever, we expect all CSRs (in this case A1 and A2) to peri-
odically broadcast their health information. This information
includes, but not limited to, current load on CSR, and free
cache space. When B1 receives this information, it under-
stands A1 is busy, and therefore selects an alternate path, i.e.,
selects A2 as the forwarding directive. We envision the exis-
tence of a piggybacking scheme or protocol used to exchange

such health information, thereby enabling other components
to be cognizant of their decisions.
Dynamic Adaptation: Continuing the discussion, A2 re-
ceives the content request from B1 and responds back with
s1 data. Recall s1 is part of a video object v1. For this use
case, we assume the return path from A2 to c1 is the same as
the request path, i.e., from c1 to A2. Prior to receiving the re-
sponse message from A2, B1 realizes the network conditions
between itself and c1 have deteriorated (see the red link in
Figure 2). When B1 receives the response message from A2,
it attempts to mitigate the aforementioned issue by actively
transcoding s1 to a lower bitrate segment ŝ1 before deliver-
ing it to c1 (step 2.4). Thus, with the help of system-related
context information, CONIA is able to make decisions and dy-
namically adapt to changing network conditions resulting in
better content delivery.
Handling Flash Crowds: Next, we describe how our archi-
tecture envisions to handle scenarios when there is an abrupt
increase in the number of requests made for a specific ob-
ject within a short span of time. For some reason, consider
v1 becomes very popular, and clients from several locations
show interest in fetching the same object, causing a “flash
crowd” scenario over v1 (step 3.1). Many such clients’ re-
quests reach A2, which has the object cached and is responsi-
ble to serve the content. A2 realizes the “hit ctr” value i (part
of the Stats) for s1 (i.e., a segment of v1) associated with the
content-related context “CACHED” increases abruptly. A2
therefore decides to push segments associated with v1 into
B1, B2, and B3 (step 3.2). Note, the CP Controller had proac-
tively informed A2 to push a popular object into B1, B2, and
B3 as a flash crowd mitigation strategy. In other words, the
CP controller had installed the content-related context direc-
tive “POPULAR” into A2, directing it to push v1 into B1, B2,
and B3 (see rule for all objects in Table 1). This causes a new
rule to be added in the CCLT of B1, B2, and B3. This rule

enables them to directly serve segment requests related to v1.
Load Management: Intermediate network objects like CSRs
may get overloaded by handling client requests. To further
investigate, let us continue from where we left in the previ-
ous use case. B1, B2, and B3, all may get overloaded serving
the flash crowd requests (not annotated in Figure 2), and may
not have enough information on how to mitigate this load.
In such a situation, B1, B2, and B3 notify the CP controller
with a ‘BUSY’ message as defined by the control framework
API. The controller realizes the overloaded situation, and re-
solves this by, first, expanding the CDS of v1 (shown in Fig-
ure 2 as CD̂S v1), by pushing v1 into additional CSRs (step
4), and second, reply to additional clients’ (cn+1, ..., cn+m)
interest with a modified Content Map directing them to the
newly added CSRs for fetching content.

5. RELATED WORK

In [2, 3, 4], the authors study today’s large video stream-
ing services such as YouTube, Netflix, and Hulu, and show
that these services have to resort to various complex mech-
anisms/tricks (e.g., HTTP redirection, DNS-based IP geo-
mapping) to circumvent the limitations of the current host-
centric Internet architecture. As two representative examples
of information-centric architectures, NDN [5] and DONA [7]
support content as the first-class object, routing by name and
in-network caching. There are a number of other ICN pro-
posals (see, e.g., [8]) and a flurry of recent activities on ICNs.
Due to space limitation, we will not discuss them here.

CONIA differs from existing ICN designs in that it explic-
itly accounts for the complexity and diversity of multimedia
content and recognizing the prominent roles of CPs in content
delivery. By designing generic CSRs that allow CPs to in-
stall customized control logic and defining a common control
framework, CONIA enables CPs to specify their own name
schemas and directly control how content should be delivered
to users. Similar to software-defined networking (SDN), CO-
NIA enables each CP to employ controllers to effect “central-
ized” control over content delivery. But unlike SDN, CONIA
supports installation of (higher-level) declarative content con-
trol logic in CSRs instead of simple forwarding rules based
on Ethernet/IP/TCP headers. In a sense, CONIA provides
a content-based software-defined networking paradigm with
CSRs as the key network elements and the control residing at
each content provider.

6. CONCLUDING REMARKS

In this paper, we have proposed CONIA, a content (provider)-
oriented, namespace-independent network architecture for
multimedia information delivery. We provided an overview
of CONIA’s content delivery architecture and described the
basic functions of the key components. Through several use
cases, we illustrated how CONIA enables a content provider

to dynamically adapt to changing network conditions, man-
age server loads and handle flash crowds.

We emphasize that CONIA is merely a straw-man pro-
posal aimed to argue for the need for namespace indepen-
dence for complex information delivery and the importance
of taking the network economics of content delivery into ac-
count so as to make ICN architectures more scalable, robust,
economically viable, and evolvable. Due to space limitation,
in this paper we only briefly touched on or completely left out
several important aspects of CONIA (e.g., the content discov-
ery dimension, object request routing, CSR resource naming),
while many other aspects (e.g., control framework API primi-
tives, declarative control logic language specification) are yet
to fully defined and implemented. Addressing each of these
issues is a potential challenge. Issues such as security and net-
work economics warrant new lines of research. We are cur-
rently working on the specification of CSRs with declarative
control logic and API primitives for the control framework,
with the goal to develop a proof-of-concept prototype using
the Linux container framework. All in all, we strive to make
CONIA a general content delivery framework, thereby afford-
ing greater overall flexibility to various stakeholders/entities
involved in the content distribution ecosystem.
Acknowledgement. This research was supported in
part by NSF grants CNS-1017092, CNS-1117536, CRI-
1305237, CNS-1411636 and DTRA grants HDTRA1-09-1-
0050, HDTRA1-14-1-0040 and DoD ARO MURI Award
W911NF-12-1-0385.

7. REFERENCES

[1] Sandvine, “Global Internet Phenomena Report - 2H2014” .

[2] Vijay K. Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt,
Moritz Steiner, and Zhi-Li Zhang, “Unreeling netflix: Understanding and im-
proving multi-cdn movie delivery,” in INFOCOM, 2012.

[3] Vijay K. Adhikari, Yang Guo, Fang Hao, Volker Hilt, and Zhi-Li Zhang, “A tale
of three CDNs: An active measurement study of Hulu and its CDNs,” in IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS).
IEEE, 2012, pp. 7–12.

[4] Vijay K. Adhikari, Sourabh Jain, Yingying Chen, and Zhi-Li Zhang, “Vivisect-
ing youtube: An active measurement study,” in INFOCOM, 2012.

[5] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass,
Nicholas H Briggs, and Rebecca L Braynard, “Networking named content,”
in Proceedings of the 5th international conference on Emerging networking ex-
periments and technologies. ACM, 2009, pp. 1–12.

[6] “Named data networking,” http://named-data.net/.

[7] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy,
Kye Hyun Kim, Scott Shenker, and Ion Stoica, “A data-oriented (and beyond)
network architecture,” in ACM SIGCOMM Computer Communication Review.
ACM, 2007, vol. 37, pp. 181–192.

[8] Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk Kutscher, and
Börje Ohlman, “A survey of information-centric networking,” Comm. Mag-
azine, IEEE, vol. 50, no. 7, pp. 26–36, 2012.

[9] Thorsten Lohmar, Torbjorn Einarsson, Per Frojdh, Frederic Gabin, and Markus
Kampmann, “Dynamic adaptive http streaming of live content,” in IEEE Inter-
national Symposium on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM). IEEE, 2011, pp. 1–8.

[10] Andreas Voellmy, Ashish Agarwal, and Paul Hudak, “Nettle: Functional reac-
tive programming for openflow networks,” Tech. Rep., DTIC Document, 2010.

