
OpenCDN: An ICN-Based Open Content
Distribution System Using Distributed Actor Model

Arvind Narayanan, Eman Ramadan, Zhi-Li Zhang
Department of Computer Science & Engineering

University of Minnesota
Minneapolis, Minnesota, USA

Email: {arvind,eman,zhzhang}@cs.umn.edu

Abstract—Building upon the results of recent works on un-
derstanding large-scale content distribution systems, we revisit
CONIA, a Content-provider Oriented Namespace Independent
Architecture for content delivery. The key idea of CONIA is to
let any willing ISP or third party to participate as a content
distribution network (CDN). In this paper, we propose a first
step in the direction of an information-centric network-based
open content distribution system (OpenCDN), that allows for
better scalability, flexibility, and performance. In particular, we
concentrate on the functions of the content store and routing
elements (CSRs) that form the network substrate. We propose an
actor-model driven programming model and a runtime system,
which together we refer to as the OpenCDN platform. Using
OpenCDN, content providers will have full control over building
and managing the basic building blocks for the functionality of
CSRs, and the flexibility on which content to cache, when to
cache, and how to satisfy user requests.

I. INTRODUCTION

While designing any system architecture, user experience
is an important aspect to consider, due to its impact on user
subscription and revenue. Nowadays, video content represents
the majority of the downstream traffic, due to the available
Internet speed, the wide use of social networks, along with
the growth in mobile devices. Hence, more video content –
by content providers and video streaming services – has been
available to end-users. Netflix, YouTube, and Amazon Video,
account for more than 55% of the downstream traffic of North
America in 2016 [1].

No single server, or even a data center, has the process-
ing capability, or the network bandwidth to serve all user
requests for this scale. Hence, large-scale content providers
(CPs in short) rely on content distribution networks (CDNs),
which contain a set of proxy servers distributed geographically
around the world. CDNs can either be: (1) homegrown owned
by content providers, as in case of Google/YouTube [2], or
(2) commercial CDNs, such as: Akamai [3], Level-3, and
Limelight, used by Netflix [4], and Hulu [5]. CDNs are typi-
cally organized in a hierarchical structure ([2], [3], [4]), where
edge servers lie at the closest tier to end-users, and the farthest
(at the top of the hierarchy) represents the origin server,
which has a copy of all content objects. Requests from end-
users are directed to the closest edge server. If the requested
content is not cached, some complex techniques, such as DNS
redirections, HTTP redirection, and IP anycasting, are used to
forward requests to higher layers in the hierarchy.

Coping with this large-scale content delivery, information-
centric networks (ICNs), e.g., NDN [6], [7], DONA [8], and
idICN [9] (see [10], e.g., for a survey of ICN architectures),
have been proposed to address the limitations of today’s host-
oriented Internet architecture. All these designs share two basic
design tenets: (i) content is the first-class citizen that can be
directly named and routed; and (ii) content storage should
be part of the network substrate. The second tenet allows
for in-network caching and storage, that will be of utmost
importance to handle the massive growth in content. Many
of these designs (e.g., NDN and idICN) still dictate a fixed
name schema (either hierarchical or flat), and adopt a conven-
tional “box-centric” view of network design – they focus on
the design and functionality of individual network elements,
instead of network-wide control and operations. Nor do they
take advantage of emerging software-defined, programmable
network elements, and network function virtualization.

Thus, we have proposed CONIA [11] to address the
limitations of existing ICN architectural proposals, by ad-
vocating a namespace independent architecture, using open
programmable content store and routing elements (CSRs in
short) as part of the network substrate (as shown in Fig. 1).
The key idea is to allow any ISP or third-party (e.g., an
existing CDN provider or even an end-user) to participate
in content distribution by bringing their own generic and
programmable CSR boxes (i.e., cache servers with storage and
compute power). CSRs are responsible for caching content,
and providing the basic functionality for resource management
and content delivery. In this paper, we propose an open
control framework, which enables CP controllers manage
and configure CSRs using standardized APIs, along with a
runtime system, which altogether we refer to as the OpenCDN
platform.

While designing OpenCDN for managing CSRs, the follow-
ing key design goals are required: (1) Modularity, composi-
tionality and velocity: this platform must support modularity
among the basic building blocks, which allows them to con-
tinuously evolve to meet changing application requirements.
However, updating certain blocks should not affect others.
Additionally, some of the basic building blocks could be
assembled together to form a new CSR operation, hence, the
correctness of the system should be ensured under various
operational contexts & environments. (2) Scalability and



availability: this platform also needs to support “auto-scaling”
(via replication/parallelization) for individual blocks without
affecting the system’s performance. Moreover, the impact of
a module’s failure on others need to be minimized, with a
fast recovery to meet the CP’s quality of experience require-
ments even during failures. (3) Performance: the proposed
platform also needs to take advantage of the available multi-
core servers, multi-server clusters/clouds, and hardware ac-
celerators (e.g., DPDK [12], RDMA, NetFPGA [13], etc.).
(4) Mobility: functions provided by this platform should have
the flexibility to move from one server to another smoothly,
which enables dynamic load balancing and fault tolerance.

One way to realize these goals is by using the “Actor
model frameworks”, such as Akka [14], Erlang [15], and
Orleans [16], which are becoming increasingly popular in
building large-scale distributed applications. However, existing
actor model frameworks are not customized for multimedia
content, and their performance is not optimized from the
networking perspective as explained in the next section. This
motivates us to customize an actor model-based runtime and
programming model for CONIA’s architecture. Our proposed
OpenCDN platform uses the actor programming model, and
provides an abstraction for content providers to manage and
configure CSRs. It also includes inherited support for resource
management, scalability, resiliency, and relocation/migration.
The rest of this paper is organized as following: Section II
provides the background and related work. In Section III, we
decompose the operations of the CSR to identify a set of
building blocks, and understand their behavior. In Section IV,
we present our proposed OpenCDN platform, which leverages
the actor model to realize the building blocks associated with
CSR operations. The paper is concluded in Section V.

II. BACKGROUND AND RELATED WORK

A. CONIA’s Architecture

We have proposed CONIA [11] as a novel content
(provider)-oriented, namespace-independent architecture for
content delivery. No single namespace or schema can fit
diverse content types, because content objects are complex
and composite (i.e., consist of other objects). For example,
a movie consists of audio and video segments, which are
often encoded in different bitrates. Thus, CONIA allows
content providers to define their own namespace. Moreover,
CONIA was designed to provide a software-defined paradigm
for content distribution. Unlike existing ICN architectures,
CONIA allows CPs to employ their own management policies.

Fig. 1 shows a schematic illustration of CONIA’s archi-
tecture, which consists of three main components: 1) CP
controllers, 2) content store and routing elements, and 3)
content players at the end-user side. CP controllers are content-
provider specific, responsible to provision and manage CSRs.
Client content players can be generic or CP-specific software,
which allow end-users to interact with CP controllers and
CSRs. Upon receiving a user request, the CP controller sends a
Content MAP (i.e., metadata of the content – more specifically
what to request & from where) to the content player situated

CP Controller A 

CP Controller B 

Client Content Player 

CSR 

CSR 

CP A’s CSR 
CP B’s CSR 
Unused CSR 

Fig. 1. CONIA’s Architecture

at the end-user premises. CPs also define the control logic to
dynamically specify how user requests should be handled, and
install it in the corresponding CSR elements in the network
substrate.

CSRs are generic, programmable resources for content
delivery, which can be shared by multiple CPs. CSRs can
be provided by ISPs, enterprise networks, CPs themselves,
or third-party entities similar to commercial CDNs nowadays.
CSRs are responsible for caching content, and providing the
basic functions required for resource management and content
delivery. CSRs also store CP-specific control logic to handle
user requests and content objects, report the collected statistics
to CP controller, and exchange data & health information
with other related CSRs. CP controllers configure CSRs to
install their control logic using an open control framework
with standardized APIs. Upon receiving an object request, a
CSR looks up and applies the corresponding control logic (see
Section III for more details).

In Summary, CONIA is designed to handle the diversity
and complexity of various content types. It provides each CP
the flexibility to specify its own content management strategies
such as cache management, load balancing, etc. to dynamically
handle user requests, and optimize the content delivery process
to meet users’ quality of experience (QoE) expectations.

B. Actor Model Framework

Actor model frameworks such as Akka [14], Erlang [15],
C++ Actor Framework [17] and Orleans [16] are becoming
increasingly popular in building large-scale distributed appli-
cations. In such applications, actors are the basic building
blocks or primitives. Each actor is an independent unit of
computation, which contains its own private state, a mailbox
(or a message queue) for accepting incoming requests, and a
set of functions to realize a predefined behavior running on a
single thread (see Fig. 2).

Actors are isolated from each other, and therefore do not
share state information with one another. In other words,
an actor can never change the state of another actor by
itself. Actors interact asynchronously with each other using
messages. Therefore, actors sending messages to other actors
need not wait for a reply from other actors, thus non-blocking.



mailbox
state

actor

Fig. 2. The Actor Model

Incoming messages are received by the actor through its
mailbox, which triggers the actor to run a set of functions
that could either use or update the state information to finally
produce an output. The output is then packed into a message,
and sent to the next actor as defined by the behavior of the
actor. Multiple actors can be running concurrently at the same
time as if each is running in its own thread. Such model
simplifies the programmability of the distributed system, and
helps eliminate race conditions, which otherwise would require
using locks and monitors.

C. Related Work

Existing actor model frameworks ([14], [15], [16]) are
not customized for multimedia content. Especially their per-
formance from the networking perspective is not optimized.
For example DPDK [12] is not natively supported in Erlang,
thus the actor messages use kernel networking stack. This
motivates us to customize an actor model-based runtime
and programming model for CONIA’s architecture with high
performance. In the following sections, we illustrate the basic
CSR operations, and describe how the actor model framework
can be used to implement them.

In order to accelerate HTTP and reduce network load, web-
site administrators (or content providers) have for long relied
on caching content objects on nodes that are able to fulfill
end-user requests with reduced latency and better quality of
experience. While there are plenty of such platforms, Varnish
Cache [18] is one such system that can be configured by
content providers to dictate how end-user requests are handled
by specifying policies that decide what content to serve, where
to fetch the content from and how the system should alter
its internal state that affects future requests. Varnish partially
achieves in what we try to accomplish with OpenCDN – which
is to provide flexibility to content providers in driving the
content delivery process. However, Varnish is built as one
big monolithic system where are all operations are executed
by one big logical caching server which makes it difficult
to scale up. Moreover, Varnish does not natively support
distributed caching instead relies on application developers
to route requests to different Varnish instances by using load
balancers (e.g., HA Proxy).

III. ABSTRACTING CSR OPERATIONS

As discussed in the previous section, the function of CSR
includes caching content and handling user requests based on
the control logic specified by the CP’s controller. In doing so,

we first decompose CSR operations into a set of basic building
blocks or modules. Each of these building block has a well-
defined behavior and specification of what input it accepts
and the type of output it gives out. These blocks can either
be stateful or stateless. In this section, we first walk through
a scenario where – we identify the primitive building blocks
associated with a CSR in fulfilling an end-user’s request for
a content object. Later, we dig deeper into the behavior of a
few building blocks.

A. Decomposing FETCH Operation

Consider a scenario when a CSR receives a FETCH request
for a content object from an end-user. In a nutshell, upon
receiving such a request, the CSR parses the request, and
checks if the requested piece of content is cached or not. If
the requested object is cached, then the content is directly
served by the CSR. Otherwise, depending on the control logic
specified by the CP controller, the CSR can fetch the content
remotely from an upper tier1 CSR, or forwards the request to
the CP controller (or origin).

Fig. 3 shows – in detail – the set of actions performed
by a CSR to fulfill a content object (or a FETCH) request.
First, the received request is sent to the Parser module to
extract the content id. This content id is then passed to the
ContentLookup module to check if the object is cached in
the disk, in memory, or not cached at all.
Cache Hit. If it is in the memory, the object is sent to the
end-user by the ReturnObject module. If it is in the disk,
the object is loaded to memory through InMemoryBuffer
module, then sent to the end-user.
Cache Miss. If the requested object is not cached,
ContentCacheMissLookup module specifies the CP con-
trol logic defined to handle a cache miss event for each object
or a group of objects. The control logic could either specify to
forward the request to the controller, or to another CSR, or to
fetch the object remotely from another CSR. In the latter case,
the request is sent to the RemoteCSRFetch module, which
picks a set of candidate remote CSRs. But instead of remotely
fetching from multiple remote CSRs, the CP control logic may
optionally use a load balancer to judiciously pick one remote
CSR and fetch from it. To do so, the RemoteCSRFetch
module sends the set of candidate remote CSRs to the
LoadBalancer module and waits for a response. The
LoadBalancer module queries the SwarmMonitor – a
module that runs separately in the background to maintain
health information of remote CSRs; and selects one CSR that
is best according to the predefined CP-configured load balanc-
ing strategy. Once the RemoteCSRFetch module receives
the response from the LoadBalancer module, it sends a
message to the PendingRequest module. A record is then
added to the internal state managed by PendingRequest
module. It then waits for replies with content objects from

1Assuming CSRs are organized in a hierarchical structure, where the edge
CSRs are the closest to end-users, and the upper tier CSRs are closer to an
origin server. Origin servers have a permanent copy of the object collection.



Uentry Parser

InMemory
Read

Disk
Read

ContentCache
MissLookup

RemoteCSR
Fetch

ForwardTo
CSR

ForwardTo
Controller

InMemory	
Buffer

Return	
Object Uexit

Pending
Request CSRexit

CSRentry

CT
RL
ex
it

lookup

data

ca
ch

e 
m

is
s

from 
end user to

end user

to
other CSR

from
other CSRParser

da
taContent	

Statistics
update

to
controller

Load	
Balancer

Swarm	Monitor

Interfaces
Actor with Internal State
Stateless actor

remoteCSRReply

Disk	
Write

InMemory
Write

Disk	
Evict

InMemory	
Evict

update update

update

update

Content
Lookup

Caching

Fig. 3. CSR Operations

remote CSRs. All the modules are non-blocking and do not
block other requests.
Pending Requests. Upon receiving a fetch request if the object
is not cached, the state in the PendingRequest module is
checked to see whether a request for the same object and
remote CSR exists and is pending. If yes, the request will not
be forwarded again, instead update the existing entry with the
end-user information and the set of actions to be carried out
when the requested content is received.
Remote CSR Reply. Upon receiving the object from a remote
CSR (CSRentry), it is first parsed and two tasks are run
in parallel: 1) serving end users, and 2) caching the object
locally (if required). For the first task, the state for the object is
loaded from the PendingRequest module which specifies
the end-user(s) who requested this object and is forwarded to
the ReturnObject module which replies to the respective
end-user(s) with the content object. For the second task, the
Caching module would check if the received content object
should be cached locally by the CSR or not, if yes, whether
to cache it in the memory or disk. If the disk or memory is
full, the Caching module would also decide which object to
evict. Depending on the actions to be taken, messages are sent
to the appropriate modules in the path.
Memory/Disk Write. Given a content object and location,
InMemoryWrite module writes it to the memory, and an
update is sent to the ContentStore module, indicating
what content object was added. Similarly, for the disk write
operation as well, a similar flow can be seen. Due to space
limitations, we skip the description of InMemoryEvict and
DiskEvict modules.

B. Understanding the Building Blocks

After showing the flow of operations in fulfilling a FETCH
operation, we now go deeper into understanding some of the
building blocks. Each building block may need to store and
maintain information in its internal state to realize its specific

behavior. We illustrate with examples how such building
blocks react to a specific input and how their internal state
is managed and controlled.

ContentLookup. The purpose of this module is to check
if a particular object is cached or not, and if it is cached
provide more details on how to load it. The input of this
module is in an object of type CL_LOOKUP. This input object
contains two pieces of information: 1) content identifier or
content id, and 2) optional tags used to search the specific
piece of content (e.g., range of bytes, bitrate, language) or
aides in the the lookup process (e.g., DHT partition tags). To
perform the lookup operation the ContentLookup module
maintains a ContentStoreTable as its internal state. This
table contains a list of content objects cached in the CSR. For
each cached object, this table also contains information such
as whether it is stored in-memory or disk, and the path to read
the content object from, version information, timestamp when
it was added to the CSR cache, etc. As a result, this module re-
turns a CL_LOOKUP indicating whether the requested content
object is CACHED (along with other information such as read-
location) or NOT_CACHED. Based on whether it is a cache
miss, a disk hit, or an in-memory hit, the resulting message is
passed to the relevant module. The ContentLookup module
also generates a CSTAT_UPDATE message and sends it to
the ContentStatistics actor. The message contains the
content id and the status of lookup (e.g., cache miss, in-
memory hit, or disk hit). This module also accepts another
type of input message, CL_UPDATE which is responsible for
updating the contents of the ContentStoreTable. For
example, as shown in Fig. 3, whenever content objects are
written or evicted from the disk or memory, an update message
(CL_UPDATE) is sent to the ContentLookup module –
which consequently updates its internal state by either adding
or removing entries to/from the ContentStoreTable to
reflect the latest changes.



Parser. This module is responsible for parsing the incoming
messages (raw byte stream) according to the parsing logic
specified by the CP. It identifies the intent associated with
each message, prepares the intent-specific object, and finally
passes the object to the next relevant module. For instance
in Fig. 3, we see there are two Parser based modules,
one for the messages coming from the end-user interface
(Uentry), and another for the messages coming from other
CSRs (CSRentry). Parser is a stateless module as it does
not need to maintain any state information to parse messages.

We can see that the realization of a CSR requires a set of
building blocks or modules. Thus, a framework is required to
provide an abstraction of these modules to enable CP con-
trollers to configure them through a standard programmable
API, regardless of how these modules are mapped to the physi-
cal resources of the CSR. Moreover, this framework also needs
to support some required features such as fault tolerance, data
replication, consistency, scalability, etc. without sacrificing the
system’s performance. Hence, we propose OpenCDN in the
next section.

IV. PROPOSING OPENCDN

We propose an OpenCDN platform with the goal to foster an
open and competitive content distribution ecosystem. The key
idea is to enable any ISP or third-party (e.g., an existing CDN
provider or even an end-user) to participate collaboratively
in content distribution by bringing their own generic and
programmable CSR boxes (i.e., cache servers with storage
and compute power), thus becoming a CDN. In this section
we outline the programming model and design choices for a
runtime system that are critical to the OpenCDN platform.

A. Programming Model

We adopt the actor framework to implement the basic building
blocks or modules identified for operating a CSR. This frame-
work fits well in implementing our decomposed set of primi-
tive modules where each actor encapsulates the behavior and
internal state information of a primitive module. OpenCDN’s
programming model supports the following features:
State Information. Each module/actor maintains its own
internal state. Depending upon the behavior of the actor,
characteristics of the state information such as frequency
of updates, consistency requirements across different servers
or fault-tolerance levels may change. Therefore, we allow
application developers to dictate what state information to
persist, and when. They can explicitly define such persistence
checkpoints in the actor’s behavior, or configure it to period-
ically persist the internal state information. For example, in
Fig. 3 the ContentLookup module maintains an internal
state table named ContentStoreTable. This table con-
tains the information about the cached content objects and
their location.
Strong typed Language. A strongly typed language is con-
sidered to be a safer programming model mainly, due to the
fact that a number of errors can be prevented at compile

time itself, thus paving way for self-tested code. Actor in-
terfaces in OpenCDN are all strongly typed. For example,
ContentLookup module will only accept input objects of
type CL_LOOKUP or CL_UPDATE.

Asynchronous Messaging Passing & Promises. Similar to
the classical actor model, different actors interact with each
other by asynchronous message passing. Therefore, an actor
sending a query message does not wait for a response back
instead gets a promise. A promise is a reference to a place-
holder where a result of some task will eventually get stored.
However, the querying actor would wait if it cannot proceed
without getting the response from the reference pointed by the
promise. The concept of a promise (or also referred to as a fu-
ture) is popular among the parallel, concurrent programming,
and distributed systems communities. For example, when a
ContentCacheMissLookup module directs to fetch the
content from a remote CSR, the subsequent module selects
a candidate set of CSRs, and this set is forwarded to the
load balancer. While the load balancer computes and checks
the best CSR to remotely fetch the content, a reference to a
promise is used and the process continues, instead of waiting
for the result. The promise along with the content request is
now forwarded to the PendingRequest module. Here, let’s
assume that an entry for the same piece of content is already
present in its internal state, therefore, this module does not
forward the content request to the remote CSR, instead it
updates the existing entry in its internal state with the end-
user’s session details.

Actor Reference Addresses & Mailboxes. Actors are ad-
dressable, and use the address as a reference to send messages
to each other. Incoming messages received by actors are
queued in their mailbox. An actor will sequentially dequeue a
message from its mailbox and process it one after the other.
Multiple actors of the same type can run concurrently and
separately as if they were separate actors. This enables auto-
scaling. For example, in Fig. 3 we find there are two Parser
actors. One of them is connected to the messages received
from users (Uentry) while another parser actor is getting
incoming messages from other remote CSRs (CSRentry).

Location Transparency. Actors are location transparent. In
other words, actors communicating with each other need not
know the physical location except the address reference or the
type of actor (if the reference is unknown). Similarly, even
the applications using OpenCDN need not know the actor’s
physical locations.

Actor Monitoring. Similar to Erlang, an actor can spawn
other actors (either locally or remotely across multiple CSRs)
there by establishing a parent-child relationship. This is ex-
tremely useful to supervise actors. For example, a parent actor
may know if a child actor has crashed and accordingly the
parent actor can take appropriate action.

Code Changes at Runtime. An actor’s behavior can also be
changed at runtime (i.e., hot code loading). This particularly
is helpful in rapid prototyping.



B. Runtime System

OpenCDN is intended to not only run on a cluster of servers
but across different geographic locations. Multiple instances
of OpenCDN can also run on a single server concurrently. In
order to support the programming model described earlier in
a way that relieves application developers from making low-
level configurations and managing the underlying services,
OpenCDN’s runtime consists of five subsystems:
Transport Services. Provides runtime services that enables
message passing between actors. This includes setting up
connections between different instances of OpenCDN runtime
systems, re-use same connections to send or receive messages
between different actors. The runtime also provides remote-
actor-discovery and actor-message routing services by main-
taining data structures that map actor reference addresses to
OpenCDN runtime instances hosting actors. If an actor is
moved from one server to another due to failure or other
reasons, the actor-routing service will make necessary changes
to its mapping tables. Runtime functions required to support
DPDK and NetFPGA operations are part of this component.
Actor Lifecycle & Management Services. This component
of the runtime manages the lifecycle of actors from the time
they are created till they are closed. It is responsible to provide
reference address at the time of actor initiation. Based on the
relationship between different actors and their behaviors, this
component provides actor placement services which decide the
physical servers where actors will be hosted. Message passing
between two local actors residing on the same server are car-
ried out by this component. Services required to transparently
migrate actors are also provided. Enabling actor mobility in
a transparent fashion further helps in achieving dynamic load
balancing and fault tolerance.
Resource Management. Runtime services required to monitor
actors, physical servers and to wheel out load balancing
strategies are provided by this component. Scheduling tasks
corresponding to actors are managed by this component. It is
important that fairness of resource usage is maintained and no
actors take up resources indefinitely.
Application Logic Services. Execution of control logic code
specified by application developers is managed by this runtime
component. We specified earlier that in order to avoid race
conditions, actors are single threaded. This component ensures
that even after context switching, the resumed actor (or thread)
will always at any point of time execute in a single thread only.
Understanding state dependencies in the control logic of the
applications is important so as to understand what actors or
flows in the application logic can be parallelized.
Fault Tolerance, Data Replication & Consistency. Actors,
OpenCDN runtime instances and servers may fail, messages
may not get delivered and failure can happen in any form
at any time. Handling them in a transparent manner without
affecting other services and systems is crucial in building
resilient systems. This relieves the programmer from managing
failures explicitly. Similarly, critical data needs to be replicated
for high availability and fault tolerance.

V. CONCLUSION

In this paper, we proposed a first step in the direction of an
information-centric network-based open content distribution
network architecture (OpenCDN). We provided an overview
of CONIA’s ICN architecture, and elaborated on the functions
of the content store and routing elements (CSRs) that form
the network and storage substrate of CONIA. We decomposed
CSR operations to identify a set of primitive building blocks.
We also studied the behavior of a few building blocks and how
their state is used and managed. We highlighted the design of
our proposed OpenCDN’s an actor-model driven programming
model and runtime system. This design allowed us to build
a modular, scalable and resilient content distribution system.
Moreover, it can also be leveraged to build other distributed
systems with the same goals.

ACKNOWLEDGMENT

This research was supported in part by NSF grants CNS-
1411636, CNS 1618339 and CNS 1617729 and a Huawei gift.

REFERENCES

[1] Sandvine, “Global Internet Phenomena Report - June 2016.”
[2] V. K. Adhikari, S. Jain, Y. Chen, and Z.-L. Zhang, “Vivisecting youtube:

An active measurement study,” in INFOCOM, 2012.
[3] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: A

platform for high-performance internet applications,” SIGOPS, 2010.
[4] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and Z.-

L. Zhang, “Unreeling netflix: Understanding and improving multi-cdn
movie delivery,” in INFOCOM, 2012.

[5] V. K. Adhikari, Y. Guo, F. Hao, V. Hilt, and Z. Zhang, “A tale of
three CDNs: An active measurement study of Hulu and its CDNs,”
in Computer Communications Workshops (INFOCOM WKSHPS), 2012
IEEE Conference on. IEEE, 2012, pp. 7–12.

[6] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies. ACM, 2009, pp. 1–12.

[7] “Named data networking,” http://named-data.net/.
[8] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,

S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” in ACM SIGCOMM Computer Communication Review,
vol. 37, no. 4. ACM, 2007, pp. 181–192.

[9] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, and S. Shenker, “Less pain, most of the
gain: Incrementally deployable icn,” in ACM SIGCOMM Computer
Communication Review, vol. 43, no. 4. ACM, 2013, pp. 147–158.

[10] B. Ahlgren and et al., “A survey of information-centric networking,”
IEEE Communications Magazine, July 2012.

[11] E. Ramadan, A. Narayanan, and Z.-L. Zhang, “Conia: Content
(provider)-oriented, namespace-independent architecture for multimedia
information delivery,” in ICMEW, 2015.

[12] “Data Plane Development Kit,” https://dpdk.org/.
[13] “NetFPGA,” https://netfpga.org/.
[14] “Scala Akka,” http://www.akka.io/.
[15] “Erlang,” https://www.erlang.org/.
[16] “Orleans,” https://research.microsoft.com/projects/orleans/.
[17] D. Charousset, R. Hiesgen, and T. C. Schmidt, “Revisiting Actor

Programming in C++,” Computer Languages, Systems & Structures,
vol. 45, pp. 105–131, April 2016.

[18] “Varnish Cache,” https://varnish-cache.org/.


