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Abstract—In this paper, we advocate the notion of “BIG”
cache as an innovative abstraction for effectively utilizing the
distributed storage and processing capacities of all servers in
a cache network. The “BIG” cache abstraction is proposed
to partly address the problem of (cascade) thrashing in a
hierarchical network of cache servers, where it has been known
that cache resources at intermediate servers are poorly utilized,
especially under classical cache replacement policies such as LRU.
We lay out the advantages of “BIG” cache abstraction and make a
strong case both from a theoretical standpoint as well as through
simulation analysis. We also develop the dCLIMB cache algorithm
to minimize the overheads of moving objects across distributed
cache boundaries and present a simple yet effective heuristic for
addressing the cache allotment problem in the design of “BIG”
cache abstraction.

I. INTRODUCTION

A key premise of emerging information-centric network
(ICN) architectures is that storage is an integral part of the
network substrate. Namely, many – if not all – routers will
be equipped with the capability to store/cache data objects
on-the-fly. For brevity, we refer to routers with storage as
cache servers, and a network of cache servers as a cache
network. Given a cache network, how to effectively utilize
the (distributed) storage capability of cache servers to help
deliver information in a scalable and efficient manner is one of
many major design questions in ICNs and content distribution
networks (CDNs) in general.

In conventional web content delivery, (reactive) object
caching takes advantage of the temporal locality of reference
associated with a typical user browsing behavior. Caching
frequent accessed objects thus reduces web delivery latency
and bandwidth consumption. In large-scale streaming video
delivery, server load, bandwidth usage, and energy consump-
tion are often times more important design and operation con-
siderations than merely latency. This is due to many factors:
the size of video objects, the scale of the content delivery
system and lack of temporal locality of reference (within
a short time period). As no single server or even a single
data center has all the processing and network bandwidth to
serve all user demands, large online content service providers
such as Google/YouTube and Netflix have resorted to employ
one or multiple CDNs to help deliver content to users in a
scalable and timely manner. These CDNs are often organized
in a hierarchical structure with multiple tiers of geographically
dispersed content servers [1], [2], [3], [4], where the lowest
tier functions as edge servers (closest to users) for content
delivery and origin servers lie at the top of the hierarchy.

Unlike existing content delivery systems which resort to
(often exogenous, coarser-grained) complex mechanisms, e.g.,
DNS anycasting & redirections, IP anycasting, or HTTP

redirections [1], [2], [3], [4], for content request (re-)routing
and load balancing, ICNs enable fine-grained and in-network
content request routing and caching based on content name
directly. This allows an edge server in ICN to directly route
requests through a sequence of intermediate cache servers
(see Fig. 1) towards the origin server of a content provider.
Such ability of caching-along-the-path (or more generally in-
network caching) is touted as one of many advantages of a
content-centric network with built-in network caches [5].

However, due to the problem of thrashing, the effectiveness
of “caching-along-the-path” (i.e., object replication) has been
questioned in some studies (see, e.g., [6] and discussion in
§ II-B.) This has led the authors in [6] to argue that content
should only be cached at edge servers. With explosive growth
in various types of content or information and insatiable
demands for them, it is unlikely that relying solely on the
storage and processing capacities of edge cache servers alone
would be sufficient to meet the scalability and performance
of future ICNs. It is therefore imperative to fully utilize the
storage and processing capacities of all cache servers in a
cache network. In order to develop more effective and efficient
(distributed) algorithms to achieve such a goal, we argue that
new abstractions and better theories are called for.

In this paper, we advocate the notion of one “BIG” cache
as an innovative abstraction for effectively utilizing the dis-
tributed storage and processing capacities of all cache servers
in a cache network (see § II for model assumptions and
notations): Consider a collection of objects served by an
origin server Co of a content provider in a cache network.
Given an edge server Ce where requests for this collection of
content from a (local) populace of users closer to the edge
server are first received and serviced, let C2, . . . , CH be a
sequence of intermediate cache servers along the path from
the edge server to the origin server. Under the proposed “BIG”
cache abstraction, each of the intermediate cache servers
allots a portion of its cache capacity, Ceh, 0 ≤ Ceh ≤ Ch,
h = 2, . . . ,H , to serve user requests received by the edge
server Ce = Ce1 for content objects offered by the origin server
Co; but instead of treating them as separate caches, we view
them collectively as if the cache pieces were “glued” together
to form one “BIG” (virtual) cache of capacity Ce =

∑H
h=1 C

e
h

(see Fig. 3 and § III for more details.)
As we will argue in this paper, “BIG” cache abstraction

affords several advantages. By treating the cache servers col-
lectively as one “BIG” cache with storage capacity distributed
across multiple smaller constituent cache pieces, objects may
move between the boundaries of the constituent cache pieces
as their access rates increase or decrease; however, eviction
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only happens when an object is removed from one cache
piece but not placed in another. As a result, it enables us to
fully utilize the allotted cache space at all (intermediate) cache
servers along the path from the edge server to the origin server,
yielding much higher overall hit rates. The higher overall hit
rates also significantly decrease the need to fetch content from
the origin server, thereby reducing its load as well as the
network bandwidth demand. By minimizing or eliminating the
problem of thrashing (which produces wasteful disk operations
that consume a lot of energy), we also create significant energy
savings at the cache servers.

“BIG” cache abstraction allows any existing cache replace-
ment strategy such as LRU, FIFO, k-HIT, k-LRU to be applied
as a single consistent strategy to the entire (virtual) cache.
In other words, the cache replacement strategy now becomes
orthogonal to the problem of content/object allocation across
multiple distributed caches. From a technical standpoint, we
are afforded an added benefit in that it is more amendable
to conduct theoretical performance analysis of one “BIG”
(virtual) cache comprising of a set of distributed caches
that is governed by a single consistent cache replacement
policy, as will be discussed in § III. “BIG” cache abstraction
also enables us to develop more effective cache replacement
algorithms that are designed through a (logically) centralized
perspective while yet can be implemented in a distributed
manner with little overheads. As an example, in § IV we
present dCLIMB, with the goal to minimize object movement
overheads across boundaries of distributed caches while at-
taining higher utilization of these distributed caches for better
hit rate and overall system performance. In § V, we discuss
the problem of the cache allotment in the design of “BIG”
cache abstraction, illustrate how this can be formulated as
an optimization problem, and outline a simple and effective
heuristic to tackle this problem in practice. The evaluation
of “BIG” cache abstraction is presented in § VI where we
demonstrate its efficacy over existing methods in a hierarchical
tree caching structure. The paper is concluded in § VII.

II. ASSUMPTIONS AND MOTIVATION

A. Network Model

Considering a network of cache servers Cs ∈ C = E ∪ H
and a single origin content server Co offering a collection of
content objects, O = {O1, . . . , ON}. Each Ce ∈ E ⊆ C,
is an edge server deployed to service requests for content

objects offered by Co from users of one user populace located
close to Ce. For each edge server Ce, a request for an object
Oi from one of its user populace is first routed to Ce; the
request is serviced directly by Ce if it has Oi cached in
its cache; otherwise it routes the request along a sequence
of intermediate cache servers, Ch ∈ H ⊆ C, towards the
origin server Co. If one of the intermediate cache servers has
Oi cached in its cache, the request is serviced by returning
the cached object along the path back to Ce, which is then
delivered to the user. If none of them have the object cached,
the request is routed to and serviced by the origin server. We
consider a general graph topology as illustrated in Fig. 1, each
edge server Ce = C1 is connected to the origin server through
a path which can traverse any number of intermediate cache
servers, Ch, 2 ≤ h ≤ H , and Co = CH+1, where H is
the maximum number of hops from any edge server to the
origin server. We refer to the cache server on the hth hop
from an edge server as a layer-(h+ 1) cache server, where
L1 is the edge server. We do not need to impose E ∩H = ∅;
in other words, an intermediate cache server with respect to
one edge server can itself be an edge server servicing another
user populace as shown in Fig. 1.

For each edge server Ce ∈ E servicing one user populace,
we assume that user requests for content objects in O follow
the standard independent reference model (IRM): user requests
are independent of each other, and the request arrival process
for object Oi is governed by a Poisson process with rate λei .
Let λe =

∑
i λ

e
i be the total object request rate for O at edge

server Ce. Then aei = λei/λ
e denotes the access probability

of object i. In our simulation studies, we will often assume
{ae} is Zipf-distributed. We further assume that user requests
across different user populaces are independent of each other,
although request arrival processes for the same object Oi
may be governed by Poisson processes with different request
rates, and the access probabilities {ae}’s may vary across
different populaces (e.g., one object may be popular among
one populace, but not among another populace.)

In this paper, we will use the term (content) object alloca-
tion to refer to methods to decide whether to allocate cache
and place objects across a distributed set of cache servers by
utilizing their cache storage capacities. For example, “caching-
along-the-path” (also known as “cache everywhere” [7]) strat-
egy will always cache a copy of an object when it passes
through a cache server; whereas the “caching at the edge
server” strategy will only cache a copy of an object at an
edge server – all intermediate servers will simply pass along
the object without caching a copy. We will reserve the standard
term cache replacement for methods to decide on what object
to place, where to place it (within a single cache) and which
object to evict if needed, upon receiving a request for a new or
existing object. Given a content object allocation strategy and
a cache replacement policy, consider a layer-h cache server,
Ch, h = 1, . . . ,H , and assume that it is on the path from an
edge server Ce to the origin server Co. We abuse the notation
by also using Ch to denote the cache size of the cache server
Ch. We denote the hit probability of object Oi at cache server
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Fig. 2. Object hit probabilities with: N = 100, Ch = 10, H = 4, R = 1M ,
k = 4, timer = 500 hits, Zipf. distr. with α = 1.0

Ch by ηeih. In other words, ηeih represents the probability that
object Oi is cached and serviced by Ch for user requests for
Oi routed from edge server Ce. The overall hit probability of
cache server Ch for servicing requests routed from edge server
Ce is calculated by ηeh =

∑
i η
e
ih. Summing over all edge

servers, ηoh =
∑
e η

e
h(≤ Ch) measures how efficient the cache

server Ch is being utilized for servicing all content requests: if
ηeh is low, then few objects are cached at Ch. Clearly, 1−

∑
e η

e
i

is the probability that object Oi is being serviced by the origin
server (and thus the overall miss probability of Oi), where
ηei =

∑H
h=1 η

e
ih; and

∑
e

∑
i λ

e
i (1− ηei ) is the overall rate of

requests serviced by the origin server. The latter indicates the
load of the origin server: higher the load at the origin server,
less effective the cache network is in helping scale out the
user content demands. If we also know the (average) network
latency φeh from a user populace serviced by an edge server
Ce to a cache server Ch, we can also derive expressions for
computing the overall service latency for servicing requests for
each object Oi and the overall service latency for all objects.

B. Problem of (Cascade) Thrashing

Thrashing occurs when objects are cached and then quickly
evicted frequently, significantly reducing the cache efficiency
as it leads to the problem of cache under-utilization. In a
single cache, this is caused by a mismatch of the cache
replacement policy and object access patterns. In a tandem
network of cache servers, thrashing can create a cascading
effect, where an evicted object causes a miss at an earlier
cache, which then triggers another eviction at one or multiple
subsequent cache servers. We illustrate this problem by consid-
ering the “caching-along-the-path” or leave-copy-everywhere
(LCE) strategy together with LRU employed at each server:
when a request for an object Oi is routed from an edge server
Ce = C1 towards the origin server Co = CH+1, if Oi is
available at Ch, 1 ≤ h ≤ H + 1, the request is serviced at
Ch; as Oi is returned from Ch back to C1 = Ce, each cache
server Ch′ , 1 ≤ h′ < h, would always cache a copy of Oi,
evicting the least recently used object if the cache is full.

Consider a simple tandem network of four cache servers,
Ce = L1, . . . , L4, with L5 = Co the origin server offering
a collection of 100 objects of unit size. The object access
probabilities follow a Zipf distribution with α = 1.0. All cache
servers have a cache of size Ci = 10, i = 1, . . . , 4. The left
plot in Fig. 2 shows the object hit probability at the edge server
(L1 = Ce) as well as the three intermediate cache servers with
a simulation run of 1M requests. We see that the object hit
probability at the edge server (L1) drops rapidly, with the hit

probability for the 5th most popular object only 40%; whereas
the object hit probabilities at the three intermediate servers
are uniformly low for all objects, with the highest values
barely reaching 5%. In other words, the intermediate cache
servers do not help improve the object hit performance at
all! Changing LRU to a more sophisticated cache replacement
policy does not significantly improve the overall object hit
performance of the intermediate cache servers. The right plot
in Fig. 2 shows the object hit probabilities at the edge server
and the three intermediate cache servers where the so-called
k-HIT cache replacement strategy is employed with k = 4:
an object is only placed in the cache if it has accumulated
at least k hits during a pre-specified time period at each
server; if the cache is full, the object with the least hits during
the time period is evicted. We see that while the object hit
probabilities at the intermediate cache servers improve over
LRU, their effectiveness in enhancing object hit probabilities
is still limited; in particular, as h increases, the role of the
layer-h cache server Lh diminishes drastically. Only when k
is considerably large would intermediate cache servers have a
marked impact on the object hit probabilities – increasing k
on the other hand reduces the ability of the cache network to
adapt to changing access patterns.

The poor performance of a tandem cache network under
“caching-along-the-path” is due to the problem of thrashing,
in particular when a cache replacement policy such as LRU is
employed at each cache: objects cached at the second cache
server after the edge server are often quickly evicted, leading
to poor hit rates; the problem exacerbates rapidly at higher-
tiered cache servers, from the second to the third, fourth, and
so forth, where these intermediate cache servers are severely
under-utilized with low hit rates. There are several reasons
behind this poor performance. Having a sequence of cache
servers operating independently in accordance with their own
cache replacement policies create two major issues: first, the
request arrival processes to the cache servers are no longer in-
dependent – caching a more popular object at a previous cache
server would reduce its access rate at subsequent cache servers,
making it less popular (i.e., causing changes in the request
access pattern at higher layers after filtering popular content).
This affects the ability of subsequent cache servers to properly
estimate the “popularity” of objects. Second, when an object
is evicted from, say, an edge or intermediate cache server, it is
simply discarded – this is not only a wasteful operation; more
importantly, past (access) information about this object is sim-
ply lost. The compounded effects of these two factors create
a cascade of thrashings at the intermediate servers, resulting
in severe under-utilization of cache resources. The poor hit
rates at the cache servers due to thrashing also create another
major problem that is of utmost importance in practice: missed
content requests must be serviced by the origin content server;
this causes the origin server to be overloaded; it also requires
more network capacity at the origin server! As noted in the
introduction, besides reducing the overall latency of serving
user content requests, another major reason that today’s large-
scale online content providers employ one or more CDNs to
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Fig. 3. “BIG” Cache Abstraction

help content delivery is to reduce the processing and network
bandwidth demands on origin content servers (which cannot
meet all user demands) by scaling out through geographically
dispersed cache servers deployed by CDNs. In addition, the
“wasteful” operations (e.g., read or write operations to the
local disks) at cache servers due to thrashing also produces
higher energy consumption that is of an increasing concern in
current and future content delivery networks [8].
Related Work. Caching has been a well studied subject
with a rich literature. ICNs have attracted a flurry of new
studies on caching strategies, in particular, in the context of
CCN/NDN [5]. We refer the reader to the excellent paper [7]
and the references therein for a survey and summary of various
caching policies and their analyses. We also do not claim a
novel contribution regarding the poor performance of cache
servers in a tandem network. Similar observations have been
suggested based on anecdotal evidences in [9], [10]. Partly due
to these observations, the authors in [6] argue for “caching at
edge servers” only, and propose an “incrementally deployable”
ICN architecture. Object allocation strategies which slightly
improve upon “caching at edge servers” such as leave-copy-
probabilistically (LCP) and leave-copy-down (LCD) have been
proposed and analyzed in [7]. In LCP, if Oi is available at
Ch, 1 ≤ h ≤ H + 1; as Oi is returned from Ch back
to C1 = Ce, each cache server Ch′ , 1 ≤ h′ < h would
cache a copy of Oi with a probability q, while in LCD only
the cache server Ch−1 caches Oi. However, these alternative
object allocation strategies do not fully take advantage of
the resources available at the entire cache network, and the
thrashing problem is still applicable as at least one more copy
is still cached on the way back to the end-user. As such, the
overall scalability of the cache network will be limited by the
resources available at the edge servers (and only a portion
of other cache servers.) Thus, in this paper, we also provide
analysis through simulation demonstrating the in-efficiency of
these object allocation strategies compared to “BIG” cache
abstraction as shown by the results in § III, VI. To the best
of our knowledge, we are the first to propose the notion of
“BIG” cache abstraction and demonstrate its ability in fully
utilizing cache resources at intermediate cache servers.

III. CASE FOR “BIG” CACHE ABSTRACTION

“BIG” Cache Abstraction. Given an edge server Ce which
serves content requests from its user populace for objects
in O offered by the origin server Co, let C2, . . . , CH be a
sequence of intermediate cache servers along the path where
content requests are routed from Ce to Co. The cache servers,
C1 = Ce, C2, . . . , CH together with CH+1 = Co form a
tandem cache (sub-)network, a branch from an edge server to
the origin server in the hierarchical cache network with a tree
structure shown in Fig. 1. The object request arrival rates at Ce
are given by λei ’s for Oi’s in C. In the conventional paradigm,
each cache server operates its own separate cache independent
of others, serving content requests as they arrive and makes
caching decisions on its own. As illustrated in the previous
section using simple examples, this conventional paradigm
creates complicated interactions among the cache servers along
the path, producing the problem of cascade thrashing. As
a result, the cache performance is poor; in particular, cache
resources at higher layer cache servers (along the path towards
the origin server) are severely under-utilized. To circumvent
these issues, we propose the notion of “BIG” cache as an
innovative abstraction for effectively utilizing the distributed
storage and processing capacities of all cache servers in a
cache network. This abstraction is formally defined below.

Consider a sequence of cache servers, C1 = Ce, C2, . . . ,
CH , where the intermediate cache servers, Ch, 2 ≤ h ≤ H ,
may also serve content requests from other edge servers,
Ce′ 6= Ce – namely, they are on the path from another edge
server Ce′ towards the origin content server Co = CH+1 (see
Fig. 1). Under the proposed “BIG” cache abstraction, each
intermediate cache server would (logically) allot a portion of
its cache capacity, Ceh, 0 ≤ Ceh ≤ Ch, h = 2, . . . ,H , to
service content requests routed from the edge server Ce = Ce1
for content objects offered by the origin server Co. Instead of
treating the cache pieces as separate caches, we view them col-
lectively as if these cache pieces were “glued” together to form
one “BIG” (virtual) cache with capacity Ce =

∑H
h=1 C

e
h.

This is schematically depicted in Fig. 3, where several “BIG”
virtual caches are shown for different edge servers highlighted
in colors. With this abstraction, objects are placed in the
“BIG” virtual cache distributed across H cache pieces under
one consistent cache replacement policy (as opposed to H
independently operated policies): objects may be moved or
swapped across the boundaries of these distributed cache
pieces; an object is only considered evicted from the “BIG”
cache if and only if it is evicted from one of the distributed
cache pieces and not placed in another one. Perhaps more
importantly, we maintain the object access patterns globally
for each “BIG” (virtual) cache, and make cache replacement
decisions consistently across the distributed cache pieces. In
other words, we emulate the same operations and behavior
of a cache replacement policy that is applied to a set of
distributed caches as if it were applied to a single “BIG”
cache. We will demonstrate the key advantages of the proposed
“BIG” cache abstraction over conventional paradigm where
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Fig. 4. Object hit probabilities at the second-layer cache C2 under LRU(I)
and LRU(B): N = 100 and C = 10

each cache server operates independently with its own cache
replacement policy. Clearly, “BIG” cache abstraction also
poses important new research challenges. For example, the
emulation creates additional overheads, where, for example,
moving or swapping objects across boundaries of cache pieces
is more costly than simply moving or swapping them within
one physical cache piece. Hence, it is desirable to minimize
these swapping overheads. In § IV, we describe one caching
mechanism for operating one “BIG” (virtual) cache across
a distributed set of cache pieces. Another major problem is
how to (logically) partition and allot the cache resources at
intermediate servers among multiple edge servers so as to
maximize the overall cache network performance. We discuss
and tackle this problem in § V.
Theoretical Performance Analysis. “BIG” cache abstraction
allows any existing cache replacement strategies such as LRU,
k-HIT, FIFO, RAMDOM, k-LRU, etc. [7] to be applied as a
single consistent strategy to the entire “BIG” (virtual) cache.
We are also afforded an added benefit in that it is more
amendable to conduct theoretical performance analysis, as will
be illustrated shortly. Consider a cache of size C and a request
arrival process λ = {λi}, where λi is the request rate for object
Oi ∈ O. Given a cache replacement policy P , let ηPi (C, λ)
and ρPi (C, λ) = λiη

P
i (C, λ) be the hit probability and hit

rate of object Oi as a function of C and λ under P . Then
ηP (C, λ) =

∑
i η
P
i (C, λ) and ρP (C, λ) =

∑
i λiη

P
i (C, λ)

represent the overall cache hit probability and rate under P .
The authors in paper [7] provide a nice summary of vari-
ous cache replacement policies with approximate theoretical
analysis of their performance under IRM and renewal arrival
processes. We can directly apply these theoretical analyses to
our “BIG” cache.

Given a “BIG” cache of size Ce =
∑H
h=1 C

e
h, the overall

hit probability and hit rate of each object as well as the entire
“BIG” cache under a cache replacement policy P are simply
given by ηPi (C

e, λ), ρPi (C
e, λ), ηP (Ce, λ) and ρP (Ce, λ).

For h = 1, . . . ,H , define Ce≤h =
∑h
l=1 C

e
l . Hence Ce≤h

is the total cache size of the first h layers staring from
the edge server. We can provide a theoretical estimate of
the cache performance or efficiency of the cache piece at
the hth layer, Ceh, directly. For example, the (additional) hit
probability ηeih of object Oi contributed by the cache piece
Ceh is given by ηeih = ηPi (C

e
≤h) − ηPi (C

e
≤h−1) (for clarity,

here we drop the parameter λ. Similarly, we can theoretically
estimate the overall object hit rate contributed by the cache

piece Ceh: ρeh = ρP (Ce≤h) − ρP (Ce≤h−1). These results can
further be leveraged to derive, for example, estimates for the
overall service latency and other performance metrics. Due to
space limitation, we do not elaborate further. The amenability
of performance analysis for “BIG” cache abstraction is in
stark contrast to the conventional approach: As each cache
server operates independently, they create complex interactions
between the cache replacement policy at one layer and the
object request arrival process at the next layer. While Markov-
modulated processes are employed to analyze a tandem net-
work of independently operated cache servers in [7], such
analysis quickly become unwieldy when H grows larger.

As a concrete example, consider a tandem network with two
cache servers, Ce = C1 and C2, each with a cache size Ci =
c and employing LRU for cache replacement. Using Che’s
approximation [11] and the theoretical analysis in [7], we can
estimate the hit probability η(I)ih of each object i at cache Ch
as follows: η(I)i1 = 1− e−λi1T

1
c and η(I)i2 ≈ 1− e−λi2(T

2
c−T

1
c ),

where Thc is the characteristic time of cache Ch of size c,
and λih is the arrival rate of requests for object i at cache
Ch, in particular λi1 = λi and λi2 = λi1(1 − ηi1) (see [7]
for details). In contrast, applying LRU to one “BIG” cache of
size C1 + C2 = 2c, the overall hit probability of object Oi
is given by η

(B)
i = 1 − e−λiT2c . The hit probability of Oi

contributed by C2 under one “BIG” cache is given by η(B)
i2 =

η
(B)
i −η(B)

i1 = e−λiT
1
c −e−λiT2c . We can mathematically prove

that η(B)
i2 > η

(I)
i2 ; due to space limitation, we omit the proof

here. Numerical results using these formulas for the object
hit probabilities at the second layer cache C2 are plotted in
Fig. 4 with N = 100, c = 10 and the same object request
arrival processes as before, where LRU(I) denotes that two
caches operate independently using LRU and LRU(B) denotes
that the two caches form one “BIG” cache operating under a
single consistent LRU policy. (In the above and throughout the
remainder of the paper, we will use the superscripts or suffices
(I) vs. (B) to denote cache servers operating independently
vs. as one “BIG” cache.) We see that the cache resource at the
second cache server C2 is much better utilized for all objects
under the “BIG” cache abstraction. Therefore, two servers in
a tandem network operating as one “BIG” cache significantly
improve the overall efficiency of the cache network.
Performance Comparisons via Simulations. We now con-
duct simulations to further demonstrate the benefits of “BIG”
cache abstraction over the conventional approach when H
increases. Consider a tandem network with four cache servers
Ch, 1 ≤ h ≤ H , each with cache size C = 10, serving a
total of 100 objects with the same request arrival processes
as before. With LRU applied independently to the four cache
servers vs. as one “BIG” cache formed by the four servers.
We also applied different object allocation strategies when
LRU is applied independently, which specifies how objects are
cached on the backward path while being sent from the cache
where they are found to users. We used the following object
allocation strategies: 1) caching at edge servers only (OE) only
cache a copy of an object at an edge server, 2) leave-copy-
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Fig. 5. LRU - Object hit probabilities, N = 100, C = 10, H = 4, R = 1M , q = 0.5 for LCP
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Fig. 6. k-HIT - Object hit probabilities: N = 100, C = 10, H = 4,
R = 1M , k = 4, timer = 500 hits, q = 0.5 for LCP

�����
����

�����
����

�����
����

�����
����

�����
����

�� ��� ��� ��� ���

�
��
��
��
��
��
��

�
��
��

�
��
�

���
�����

����
����
����
����
����
����
����
����
����
����
����

�� ��� ��� ��� ���

��
��
��
��
��
��

���
�����

Fig. 7. LRU and k-HIT - Origin Server Load and Overall Latency

everywhere (LCE) always cache a copy of an object when it
passes through a cache server, 3) leave-copy-probabilistically
(LCP) cache a copy of an object with probability q when it
passes through a cache server, and 4) leave-copy-down (LCD)
cache a copy of an object only at the cache preceding the one
in which it is found (if any) (i.e., if the object is found at Ch,
it will be cached at Ch−1). In our simulation, we use q = 0.5
for LCP. This simple simulation is intended to make the case
for “BIG” cache abstraction. More extensive simulation can
be found in § VI.

Fig. 5 shows the object hit probabilities at the three inter-
mediate servers with R = 1M object requests. We see that as
H increases from 2 to 4, the cache performance of LRU(I)-
LCE does not improve at all: cache resources at the third and
fourth layer caches, C3 and C4, are practically not utilized at
all; worse, comparing the results in Fig. 4 and Fig. 5, the object
hit probabilities at the second-layer cache C2 got worse with
H = 4. This is due to the problem of cascade thrashing we al-
luded to earlier. In contrast, under “BIG” cache abstraction, the
cache performance at C2 is not much affected as we increase
H , while the cache resources at the additional intermediate
servers, C3 and C4 are effectively utilized to improve the
object hit probabilities. Using other object allocation strategies
such as LCP, LCD only help improve the performance of LRU
very slightly, but still “BIG” cache abstraction provided better
performance, even though LRU(I)-LCD has a similar behavior
for L4, but this is not the case in the other layers and also for
k-HIT as shown in the next figure. The overall hit probability

for each object is shown in Fig. 8. The overall sum of object
hit probabilities at each layer are shown in Fig. 9, where we
recall C = 10: we see that under “BIG” cache abstraction,
the cache efficiency at each layer approaches 100%; this
is in contrast to LRU(I)-LCE where only the edge server
achieves a nearly 100% cache efficiency, whereas the second
server barely achieves 15% (=1.5/10) efficiency, and the cache
efficiency at the third and fourth cache servers is nearly 0. The
intermediate caches are still under-utilized using other object
allocation strategies (LCP and LCD) compared to “BIG” cache
abstraction. With a more sophisticated cache replacement such
as k-HIT, the cache performance of k-HIT(I) is better than
LRU(I), but similar observations still hold. With the same
model parameters, Fig. 6 shows the object hit probabilities at
the intermediate servers of the 3rd and 4th layers for k-HIT(I)
vs. k-HIT(B) for k = 4. We see that the cache efficiency at the
third and fourth server slightly improves under k-HIT(I) using
different object allocation strategies, but the cache resources
at these servers are still under-utilized. In contrast, k-HIT(B)
increases the hit probabilities of the popular objects with at
least 50% increase. Moreover, k-HIT(B) attains nearly 100%
cache efficiency at all layers as shown in Fig. 10, while the
efficiency decreases by approaching the origin server layer
using different alternatives of k-HIT(I) (k-HIT(I)-LCE, k-
HIT(I)-LCD, and k-HIT(I)-LCP). Thus, we can deduce that
“BIG” cache abstraction results in better performance than the
different object replication techniques. Finally, “BIG” cache
abstraction results in the minimum origin server load and
overall service latency (φ1 = 1, φ2 = 10, φ3 = 50, φ4 = 100,
& φ5 = 1000) for both LRU and k-HIT as shown in Fig. 7.
General Topologies. Our proposed “BIG” cache abstraction
can be applied to any general topology. Assuming a graph
structure for the cache network, for each edge server, we
need to find a line of cache servers on the way to the origin
server and then apply “BIG” cache to these set of servers.
This leads to some of the intermediate cache servers being
shared among different edge servers and be part of their “BIG”
cache, which raises an interesting research problem about how
the cache space should be partitioned among edge servers
to improve the overall performance. The cache partitioning
problem is not the main focus of the this paper, however in
§ V, we highlight how it can be formalized as an optimization
problem and provide a simple heuristic approach to address it.
It is important to clarify that partitioning the available cache
space does not mean that multiple copies of the same object
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Fig. 8. Overall object hit probability
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Fig. 9. Overall cache hit probability
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Fig. 10. Overall cache hit probability
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Fig. 11. Object hit probabilities, N = 100, C = 10, H = 4 , R = 1M , k = 4, timer = 500 hits

are cached when multiple edge servers share the same cache
server. Only one physical copy is cached among different edge
servers and this leaves more space to cache other objects
from higher layers which helps improve the hit probability
and also user latency. Cache partitioning is only virtual, but
at the same time we keep track of the statistics of each big
cache separately and objects in each big cache are managed
independently of other big caches sharing the same physical
cache server. This independent management of objects does
not impact the performance of the overall system as shown
in the results of § VI. “BIG” cache abstraction promotes
cooperating cache servers vertically (from edge server to the
origin server) to decide which objects to cache at each layer
to improve the performance than cooperating requests from
different edge servers at intermediate layers which then act
independently from each other. Moreover, intermediate servers
can also be edge cache servers for other user populace, in such
cases there are requests coming directly from users and other
requests to this intermediate server from other edge servers.
These requests may vary in the objects of interest and also
the number of requests. This variation is handled by the cache
allotment which considers all possible streams of requests
arriving at the current node and then partition the cache using
a utility function which could be related to the hit rate.

In summary, “BIG” cache abstraction decouples the cache
replacement polices from the problem of content/object alloca-
tion across multiple distributed caches. It allows any existing
cache replacement strategies such as LRU, FIFO, k-HIT, k-
LRU to be applied as a single consistent strategy to the
entire (virtual) cache. One can judiciously choose a cache
replacement policy that best matches the content object cache
patterns, e.g., LRU when there is significant temporal locality
of reference in the access patterns, or static caching [12], [7]
when object access patterns are known a priori and are Zipf-
distributed. Independently of what cache replacement policy
is employed, “BIG” cache abstraction enables us to efficiently
utilize the additional cache resources available at all cache

servers along the path to the origin server as there is only one
copy stored (vertically) on the path from the edge server to
the origin server and also one copy is stored (horizontally) at
each intermediate layer irrespective of the big caches sharing
this node; it also enables to leverage the server processing
capacities and network bandwidth made available by these
additional cache servers to fully scale out a cache network to
meet growing user demands for information and content. The
much higher overall hit rates under “BIG” cache abstraction
also significantly decrease the need to fetch content from the
origin server, thereby reducing its load as well as the network
bandwidth demand. By minimizing or eliminating the problem
of thrashing, we also create significant energy savings at cache
servers. Finally, as discussed above the performance of cache
replacement policies can be estimated by applying them to
the big cache with the summation of the allocated cache sizes
from each layer, the latency can then be calculated based on
the hit ratio at each layer.

IV. CACHING STRATEGY FOR “BIG” CACHE

When an edge cache server receives a request for an object,
a copy is returned to the user if it is cached; otherwise the
request is forwarded to other cache layers along the path to
the origin server. When a copy is found, the object is returned
to the user along the reverse path. However, this process
does not specify how the object should be cached in these
cache layers along the way back to the user. As shown in
the previous section, “BIG” cache abstraction helps improve
the object hit probability, the origin server load and also the
overall service latency for all objects. While any existing cache
replacement policy can be used in conjunction with “BIG”
cache abstraction, some cache replacement policies may incur
more overheads than others when emulating them across a
distributed set of caches. In this section, we compare the
performance of some of these cache replacement policies and
the overhead associated with them.



For instance, applying LRU to “BIG” cache, a request for
an object not in the edge cache results in inserting it at the
head of the queue (at the edge server), which would trigger a
series of object movements across boundaries of the distributed
caches. Since similar behavior applies for other cache re-
placement policies, it is therefore desirable to minimize object
movements across the boundaries of distributed caches. This
motivates us to design a cache replacement mechanism for
“BIG” cache abstraction. The key idea is that we view all
cache pieces stacked together with Ce1 = Ce on the top and
CeH at the bottom, and the entire “BIG” cache is organized
in a single (global) stack data structure (linked together by
individual stacks maintained at each cache server): intuitively,
the goal is to have the object with most frequent and recent
access is at the top of the stack, and remaining objects are
organized in the order of their frequency and recent access,
from high to low (see below for a more formal description).
At any time a request for an object already cached in the
“BIG” cache causes it to swap its position with the object
currently ahead of it. If a request for a new object currently
not cached anywhere in the “BIG” cache, it is appended at
the end of the stack, i.e., at the end of the stack maintained
at the last server, CeH . We refer to this cache mechanism as
dCLIMB, which is a generalization of the CLIMB algorithm
first studied in [13] for a single cache after applying it to a
set of distributed caches acting as one “BIG” cache. Under
dCLIMB, each object access triggers at most one object swap
operation. If the accessed object is currently at the head of the
Ceh cache, it would cause a swap operation across the cache
boundaries; otherwise, the swap operation is performed locally
within the Ceh cache.

The dCLIMB algorithm is formally described as following:
assuming each cache Ceh is organized as a stack of C slots (i.e.,
cache size). Each slot c, where 1 ≤ c ≤ C, is able to hold one
object Oi. When a request for object Oi is received at Ceh,
assuming Oi is cached at slot c at any layer Ceh, 1 ≤ h ≤ H ,
there are three possible cases: i) if c 6= 1, then Oi is swapped
with Oj at slot c − 1 in Ceh, ii) if c = 1 and h = 1, nothing
happens, and iii) if c = 1 and h = 2, 3, . . . H , Oi is swapped
with Oj at slot C in Ceh−1. In addition to the main cache
at cache server LH , dCLIMB implements a temporary cache
in order to avoid caching every requested object at the main
cache CeH , which leads to the eviction of more popular objects.
When an object is requested, only its meta-data is inserted
in this temporary cache, and only objects at the head of the
temporary cache are moved to the actual cache of LH .

Fig. 11 shows the performance of LRU, k-HIT, and dCLIMB
applied to one “BIG” cache compared to static caching, we can
notice that dCLIMB actually utilizes the intermediate layers of
the cache hierarchy with a performance close to static caching,
which we consider as the baseline. Without the knowledge of
user access patterns a priori, dCLIMB leads to caching the
most popular content objects at edge servers, and less popular
objects in higher layers in the hierarchy.

The advantages of dCLIMB are multi-fold: It is a self-
adaptive request-driven strategy which decides automatically

how objects should be placed along different cache layers
without the knowledge of user access patterns a priori. It
attains better (higher hit ratio) than the other classical cache
replacement policies by embedding the observed user access
pattern for each object in its position in the stack. Moreover,
dCLIMB is capable of dynamically adapting automatically to
changes in user access patterns and flash crowds. For example,
when an object receives a sudden burst of requests, dCLIMB
would gradually move it to a lower cache layer closer to users,
thus reducing service latency. However, this process may take
some time, depending on how large the burst of requests is.
Complexity. Finally, dCLIMB incurs minimal object move-
ment overheads compared to other cache replacement policies.
For example, for each request dCLIMB needs to update the
indexes of only two objects; only if the object is at the head
of its cache layer, it needs to be swapped with the previous
layer. In contrast, LRU needs to maintain a queue of requested
objects; each time an object is accessed, move or insert it at
the head of the queue, which requires more operations; LFU
and k-HIT need to keep track of access counts (and sometimes
timers), and require queue operations for object insertions or
movements. The number of insertions and evictions operations
for all cache layers approximately were: LRU: 2.7M, K-HIT:
222K, dCLIMB: 109K. We can notice that dCLIMB nearly
requires half the operations required by k-HIT and at the
same time provides the closest performance to static caching
and increases the object hit probabilities at different caches
without the need to keep track of counters and timers. Thus,
dCLIMB minimizes the problem of thrashing (which pro-
duces wasteful disk operations that consume a lot of energy),
and creates significant energy savings at the cache servers.
Therefore, dCLIMB presents a distributed, coordinated and
collective cache replacement policy with minimal complexity
and without the need for a global central mechanism.

V. “BIG” CACHE ALLOTMENT

One major new research problem in the design of “BIG”
cache abstraction is how to (logically) partition the cache
resources at intermediate cache servers that are shared by
multiple edge servers and allot cache pieces to form one “BIG”
(virtual) cache with respect to each edge server Ce so as to
maximize the overall cache network performance. Addressing
this problem thoroughly warrants a separate paper. For com-
pleteness, in the following we will briefly describe how this
problem can be formulated as an optimization problem. We
then outline a simple heuristic approach to tackle this problem
in practice and illustrate the effectiveness of this approach
via a toy example. We conclude by touching on a couple of
additional research issues.
Optimization. Following the notations in § II and III, we use
Ch ∈ Pe to denote that Ch is on the path Pe (i.e., a sequence
of cache servers) from the edge cache server Ce to the origin
content server Co. Hence, each intermediate cache server Ch ∈
Pe will allot a piece of its cache, Ceh (0 ≤ Ceh ≤ Ch), to form
one “BIG” cache for edge server Ce. The problem of cache
allotment for “BIG” caches can be formulated as the following



optimization problem, where we want to find an optimal set of
partitions, {Ceh, h ∈ H}, so as to maximize the overall cache
network performance:

maximize
{Ce

h
,h∈H}

∑
e∈E

N∑
i=1

λe
iη

e
i (C

e, {λe
i})

subject to Ce =
∑
h∈Pe

Ce
h, e ∈ E and∑

e∈E:h∈Pe

Ce
h = Ch, h ∈ H.

For example, if the object hit probability ηei (C
e, {λei} is a

concave function of cache size Ce (under the assumption of
Poisson request arrival processes {λei}, e ∈ E), then the above
optimization problem can be solved via convex programming.
In particular, if LRU is used, then ηei (C

e, {λei}) = 1−e−λe
iT

e

via Che’s approximation, where T e is the characteristic time
satisfying the constraint

∑
i(1− e−λ

e
iT

e

) = Ce.
Heuristic. We outline a simple yet effective heuristic that can
be useful to solve the cache allotment problem quickly in
practice. The heuristic is based on the fact that for a single
cache of size C, the static caching [12] which allocates the
cache to the top C objects (assuming all objects are of unit
size) yields the best cache hit rate. Applying this fact to a cache
network leads us to the following heuristic for cache allotment:
starting from the bottom layer of edge servers, we allot the
cache of an edge server to the top Ce objects, and remove
these objects from further consideration; more generally, at
an intermediate cache server Ch at the next layer, we merge
and sort the request rates for the (remaining) objects from
all paths Pe that traverse Ch (we treat objects/object requests
from different edge servers Ce as distinct, even though some
are for the same objects), and allot the cache to Ch objects with
the highest request rates. The number of objects (object request
rates) from Ce that is among these top Ch objects would be
the size of cache piece allotted to Ce. In the following, we
will use a toy example to illustrate that this simple heuristic
works well in practice, often yielding the “optimal” solution.

Consider a cache network of six cache servers, with
C

(1)
11 , C

(1)
12 , C

(1)
21 , C

(1)
22 as edge servers, and C

(2)
1 and C

(2)
2 as

intermediate servers : C(1)
11 and C

(1)
12 are connected to C

(2)
1 ,

C
(1)
21 and C(1)

22 are connected to C(2)
2 and both C(2)

1 and C(2)
2

are connected to the origin server Co, which offers a total of
100 objects. All caches are of size C = 10. Users serviced
by C

(1)
11 and C

(1)
21 are interested in all 100 objects, where

users serviced by C(1)
12 and C(1)

22 are only interested in the top
30 most popular objects. At all edge servers, object access
probabilities follow a Zipf distribution with α = 1.0. Since
C

(2)
1 and C

(2)
2 are symmetric, we will focus only on C

(2)
1 .

Using our heuristic, C(2)
1 would allot 3 units to C

(1)
11 and 7

units to C(1)
12 , yielding an allotment of (3, 7). For comparison,

we consider the following three allotments: (9, 1), (7, 3) and
(5, 5). Fig. 12 shows the overall hit rate with a simulation run
of 1M requests at each edge server, where the dCLIMB cache
replacement policy is employed. We see that our heuristic
yields the best overall hit rate. Clearly, if C(1)

11 is allotted
more cache at C(2)

1 , the overall hit rate for its requests would
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Fig. 12. Overall Hit Rate
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Fig. 13. B1 Gain, B2 Loss

increase, whereas the overall hit rates for requests from C
(1)
12

would decrease. Fig. 13 shows the respective gains or losses
in hit rates for C(1)

11 and C
(1)
12 under other three allotments

relative to the “optimal” allotment (3, 7).
As alluded in the description of our heuristic cache allot-

ment algorithm above, requests arriving at an intermediate
server Ch from different edge servers may be for common
objects. For requests for the same object coming from two
different edge servers, we in fact only cache one copy of
the same object in Ch to attain better storage utilization.
Instead, we simply keep track of the access patterns from each
edge server separately using separate counters. In other words,
under dCLIMB, the positions of objects in each “BIG” cache
(logically) allocated to each edge server (along a path of the
cache hierarchy) are maintained in separate counters (metadata
structures) and adjusted independently for each edge server.
The (logical) cache partition among the edge servers at Ch
is thus dynamically adjusted (instead of fixed) in accordance
with changing access patterns. Due to space limitation, we will
omit the detailed description of the algorithms for maintaining
the statistics and managing the movement of objects in the
intermediate cache servers. In a nutshell, under our scheme
for the “BIG” cache abstraction with dCLIMB, the virtual
caches allotted to the edge servers could in fact be larger
than the physical cache size, due to common objects stored
in an intermediate cache server that are accessed by multiple
downstream edge servers. In order to coordinate and control
the distributed cache servers as one “BIG” cache abstraction
in a global manner, the framework proposed in [14] can be
employed. However, how to implement such a framework for
coordinating and controlling the distributed cache servers is
outside the scope of this paper.

VI. EVALUATION

We evaluate “BIG” cache abstraction using a topology
following the multi-layered architecture of YouTube video
delivery system revealed in [2]. In this architecture, cache
servers are organized in a 3-tier cache hierarchy (primary,
secondary and tertiary servers), and the tertiary servers are
connected to the origin server. User requests are first sent to
the primary (or edge) cache servers. The primary cache server
will service the request if it has the object cached. If not,
the request is forwarded to the secondary layer. This process
continues till the object is found. If none of the cache servers
have the object, the request is forwarded to the origin server.
With this notion, we consider a similar topology in the form
of a binary tree, in which the root is the origin server (O)
and the leaf nodes are the primary (i.e., L1) servers which
receive user requests. The intermediate servers comprises of
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Fig. 14. Object hit probability at layer 2 (L2), layer 3 (L3) & origin (O)

the secondary (L2) and tertiary (L3) servers, thus H = 3.
We consider a collection of 10000 objects of unit size whose
access probabilities follow a Zipf distribution with α = 1.
Two million requests are generated for each edge server. We
assume the rate of requests to be uniform across all primary
servers. Cache sizes of primary, secondary and tertiary servers
are set to be 1000, 2000 and 4000, respectively. Thus, the
intermediate cache servers are partitioned equally among the
different edge servers sharing them (i.e., the total size of each
big cache is 3000, that’s 1000 from each cache layer.)

We compare the performance of applying LRU in “BIG”
cache LRU(B) and applying LRU independently LRU(I) in
each cache server. We also applied different object allo-
cation methods (LCE, LCD, LCP) when LRU is applied
independently, which specifies how objects are cached on the
backward path while being sent from the cache where they
were found to users. Fig. 14 shows the object hit probability
at the different layers and the origin server. The object hit
probability specifies the percentage of requests served by each
layer and also the origin server. Although not shown, we find
that LRU(I) and LRU(B) served almost a similar percentage at
edge servers. However, Fig. 15 shows LRU(B) served a higher
percentage of requests for almost all objects in the intermediate
layers (L2 and L3). We also find that LRU(B) has the least
percentage of requests being served by the origin server. All
of this suggests that “BIG” cache abstraction leads the objects
to being served more from the intermediate layers than going
all the way to the origin server. We further compare the overall
object hit probability from cache servers at layers L1, L2 and
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Fig. 16. Overall Latency (CDF)

L3 (see Fig. 15) and the average estimated latency in fetching
each of the objects (see Fig. 16). We clearly find that “BIG”
cache abstraction outperforms all other methods. The main
reason is that by caching only one copy at each path from
the edge server to the origin server, we allow space for more
objects to be cached at lower layers, and hence increase their
hit probability and at the same time minimize the load on the
origin server. Moreover, in “BIG” cache abstraction, objects
evicted from one layer are not totally discarded but they are
cached in the higher layer. Thus, “BIG” cache abstraction
enables us to efficiently utilize cache resources available at
cache servers along the path to the origin server while taking
into consideration the requests from all edge servers sharing
the same node. It is worth mentioning that the improvement
in the performance shown in this section is just by using the
simple LRU caching policy. We expect the performance to be
even better using more sophisticated caching policies.

VII. CONCLUSION

We have made a strong case for “BIG” cache abstraction to
effectively utilize the distributed storage of all cache servers
in a cache network. Through examples and simulations, we
demonstrated that “BIG” cache abstraction can indeed elim-
inate the problem of (cascade) thrashing when cache servers
operate independently with their own cache replacement poli-
cies and take full advantage of the additional cache resources
available at intermediate cache servers. We are also afforded
the added benefit that it is more amenable to theoretical
performance analysis. “BIG” cache abstraction significantly
improves the overall performance of a cache network while
also drastically reducing the loads and other performance con-
straints at origin content servers. It therefore makes ICNs more
efficient and scalable as a whole. “BIG” cache abstraction also
opens up a number of new and challenging research questions
and directions. As an initial step towards addressing some of
these issues, we have developed the dCLIMB cache mechanism
for “BIG” cache to minimize the overheads of moving objects
across distributed cache boundaries. We also outlined a simple
heuristic to address the cache allotment problem in the design
of “BIG” cache abstraction.
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