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Abstract—We conduct a detailed analysis of cellular commu-
nication patterns using (voice/text based) call detail records
(CDR) dataset from a nationwide cellular network. We analyze
a 5-month large dataset containing over hundreds of millions
of CDRs with a user population of over 5 million to dissect
meaningful communication patterns, with the goal to under-
stand their impact on – and better manage – cellular network
resources. What makes this dataset interesting is that we have
both location and timestamp information of the caller and the
callee. This allows us to associate communication patterns of
users with geographic locations. The enormous size and diver-
sity inherent in the (big)data set, however, makes extracting
communication patterns a challenging task. We illustrate this
diversity by analyzing tower-level activities and communication
patterns between towers and find certain patterns emerging.
However, due to the complex structure of the data, extracting
them becomes non-trivial. By providing structures to the data
in the form of matrices, we adopt machine learning techniques
(Laplacian Eigenmaps and t-SNE) to extract “latent” patterns
from the data, while accounting for the inherent non-linearity
and skewed data distributions. Our main results reveal the
existence of interesting regional communication patterns of
varying localities and sizes, out of which one pattern scatters
across the entire nation. Last but not the least, we also find a
number of distinct communication patterns co-existing within
the capital city of the nation.

1. Introduction

Wide adoption of smart phones and other mobile devices
has led to rapid growth in mobile traffic, which places a
huge demand on the cellular network infrastructure such
as resources on cell towers1, radio network controllers,
and so forth. Gaining a deeper understanding of cellular
usage patterns and how they are affected by user behavior
and mobility is critical to effective management of cellular

1. In this paper we use the term “cell towers” loosely to refer to radio
base stations in a radio access network of a cellular network infrastructure,
although we know in reality the radio antenna (typically sitting on a
“tower”) may not be physically co-located with the actual base station
that is attached to, which is the “active” entity that processes user “calls”
– including voice, SMS and data.

network resources and to meet user quality of experience
expectation. Originally designed for billing purpose, the
Call Detail Records (CDRs) collected by cellular network
operators provide a useful and rich data source for obtaining
insights into network usage patterns and user behavior. Since
CDRs are collected at either an initiating cell tower or a
terminating cell tower or both (when both caller and callee
belong to the same cellular service provider), they allow for
more detailed studies of cellular network usage patterns at
the (finer-grained) cell tower level2. In addition, since CDRs
are typically stored by cellular network operators for longer
periods of time (e.g., for billing), one can also conduct
studies of cellular usage patterns over a longer time horizon
resulting in the generation of big datasets.
In this paper we study the cellular communication patterns
at the cell tower level using the CDRs collected by a national
cellular provider over a period of close to five months. In
particular, using voice calls and SMS messages (thereafter
we refer to both simply as “calls”) – originating and termi-
nating at cell towers within the same nation-wide cellular
provider, we construct the nation-wide (and time varying)
traffic matrices at the cell tower level. From a network-wide
perspective, we leverage the (tower-level) traffic matrices
to analyze the usage patterns and geographical distributions
of calls at individual cell towers as well as across origin-
destination cell tower pairs. We find that call volumes at
cell towers are highly diverse, and vary drastically from
towers to towers with strong geographical effects. In many
towers, a large portion of calls originate and terminate at
the same towers, indicating both callers and callees reside
within a local area covered by a single tower. On the other
hand, the geographical coverage and density distributions of
cell towers are highly skewed, with many more towers in
large urban areas. While there are strong correlations be-
tween geographical distances and call volumes at cell tower
level, locality can only explain part of the communication

2. In contrast, since network flow records (e.g., IP/TCP header records
captured by Cisco Netflow) can only be collected at SGSN/GGSN (in the
case of UMTS 3G networks) or PGW (in the case of 4G LTE networks),
without using CDRs or other cell tower-level statistics to map flows to cell
towers (which is not an easy task to perform), network flow records only
allow for analysis of network usage pattern at the gateway/router level,
which is much coarser-grained.



patterns apparent in the cellular call data. To further dissect
and extract the significant latent communication patterns in
the call traffic matrices, we apply the Laplacian Eigenmap
method by generating a (high-dimensional) similarity matrix
from an origin-destination (OD) call matrix based on the
empirical distributions of calls from one tower to other
towers. This allows us to account for the highly diverse data
distributions in the original call traffic matrix, and allows
us to extract latent patterns or “clusters” lying in certain
lower-dimensional (non-linear) manifolds. We also develop
a visualization tool to illustrate and interpret the extracted
communication patterns.
The main findings of our study are summarized below:
• Although 25% of the total call volumes are generated

and consumed by the towers in and around the capital
of the nation, the nature of calls, such as incoming
versus outgoing volumes vary markedly across towers
and regions. Not surprisingly, there are strong de-
pendencies between call volumes at tower levels and
human activities around these towers.

• A general observation is that for most of the towers, a
majority of the calls are local: namely, the caller and
the callee for most calls are associated with the same
tower, or a conglomerate of cellular towers that are lo-
cated geographically within close proximity. However,
we show that such locality effects are diverse in that the
geographical boundaries are not clear-cut and cannot be
simply defined based on geographic distance alone.

• Since our empirical analysis suggests the existence of
certain patterns emerging out of the communication
between towers, we briefly describe an approach to
unravel such hidden patterns by using recently devel-
oped state-of-the-art machine learning tools. We find
that most of the communication patterns are regional
with varying localities and sizes. Moreover, we find
that even within the capital city, there are a number
distinct “regional” communication patterns, suggesting
the presence of vast diversity in social interactions
and human behavior. There is also one communication
pattern containing towers that are sparsely distributed
across the nation, many of which are located along ma-
jor transportation networks; this pattern likely captures
call activities of long-distance travelers.

The remainder of this paper is organized as follows: Sec-
tion 2 describes our dataset and the terminologies used in
this paper. Sections 3 and 4 analyzes the data in different
settings to show the diversity in the data and communica-
tion patterns. In Section 5, we briefly describe methods to
account for this diversity and to extract meaningful patterns
that reveal latent communities of interest from the dataset.
The paper is concluded in Section 6.

1.1. Related Work

Call detail records (CDRs) have been extensively used in
the past to model and infer user mobility patterns, gain
insights about human behavior, and to understand network

resource usage. In the last few years, both CDRs and Internet
traffic data are exploited to characterize usage patterns and
network utility in a cellular network. [1] used CDRs to
model user behaviors, but the dataset was limited with just
a few hundreds of towers spanning across three weeks.
Similarly, [2] exploited CDRs of 35 towers with 15 million
voice and 26 million short messages for 60 days to capture
usage patterns of users for urban planning. [3] used multi-
source data including CDRs to explore human mobility. [4]
studied mobile HTTP data traffic in a cellular network and
used packet level, flow level, and session level metrics to
analyze their characteristics. Authors in [5] used hourglass
co-clustering to analyze the traffic data for one day and
profile the user behaviors in a large 3G cellular service
providers in North America. Similarly, [6] studied the usage
patterns of mobile data users using heterogeneous data from
one of the largest 3G networks in North America for three
months.
Our work differs from the previous studies mainly in two
aspects. First, we use a nationwide CDR dataset with over
500 million call records spanning across five months, which
is much more representative. The enormous size of dataset
makes it a “bigdata” challenge to extract actionable or
meaningful knowledge. While most of the CDR datasets
only contain either the source or destination cellular tower
information of the call, our dataset consists both the end-
points of the call, making it superior for gaining insights
about communication patterns across locations. Using this
dataset, we are also able to understand the distributions of
calls associated with individual towers and between tower
pairs from a nation-wide perspective. Second, by using
pairwise call volumes between towers, we are able to dissect
communities (or cluster of towers) that represent different
communication patterns that are reflective of human activi-
ties and behavior.

2. Dataset Description

The datasets used in this study come from a national cellular
service provider in an African nation. The dataset contain
call detail records (CDR) representing voice and text (or
SMS) exchanges between subscribers (both of which will
be referred to as “calls” in this paper). With more than 500
million records captured over a period of 5 months from
over 1000 base stations, our goal is to analyze the data and
extract meaningful communication patterns. Every record
contains the timestamp of the call taking place, the source
base station (or cell tower) from where the call originated
and the corresponding destination base station of the call.
Additionally, we also have the geographic coordinates of all
the base stations spanning across the entire country.
Terminologies: We refer to a cellular base station as a
tower. When Bob (caller), connected to tower A, makes
a call to Alice (callee) who is connected to tower B, tower
A is the origin tower, whereas tower B is the destination
tower. In other words, this call will be considered as an
outgoing call for tower A, and an incoming call for tower



highest lowest

Towers ranked by ALL calls

0.00

0.25

0.50

0.75

1.00
No
rm
. 
av
g.
 h
ou
rl
y 
ca
ll
s

ALL
IN
OUT
SELF

Figure 1: Distribution of ALL, IN, OUT, and SELF
calls, with a fixed order of towers (x-axis) ranked by
the ALL calls (i.e. total number of calls).
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Figure 2: IN, OUT, and SELF call ratio distributions
with a fixed order of towers (x-axis) ranked by the
ALL calls (same as in Figure 1).

B. However, if both Alice and Bob are connected to the same
tower C, i.e., both the origin and destination towers are the
same, then we refer to such a call as a SELF call (from
the perspective of the tower). Consequently, we use call
direction to define four aggregated metrics associated with
every tower i, 1) SELF calls: the total number of SELF calls
for tower i, 2) IN calls: the total number of incoming calls
received by tower i excluding SELF calls, 3) OUT calls: the
total number of outgoing calls made by tower i excluding
SELF calls, and, 4) ALL calls: the total number of calls seen
at tower i (IN + OUT + SELF). In this paper the granularity
associated with these metrics is average number of calls
per hour. This was a reasonable choice as we empirically
saw (not shown in this paper) that the tower-level average
number of calls per hour was highly correlated to the total
number/volume of calls (i.e. overall tower-level activity).

3. Diversity in Call Volumes

In this section we analyze call volume distributions at tower-
level. We try to investigate “if” and “how” the call volume
patterns change over space (i.e. towers) by comparing dif-
ferent types of calls (i.e. ALL, SELF, IN, and OUT) with
each other.

Call patterns from cellular towers are driven by user de-
mands and behavior. For example, due to its larger pop-
ulation size, we would expect that as a whole, towers in
urban cities would have higher call volume than the towers
located in rural areas. In our dataset, we observe that the
capital city of this nation captures more than 25% of the
entire call volume. In Figure 1, we rank the towers based
on the average number of ALL calls made per hour, and plot
their distributions based on the call directions. We observe
that the distributions of IN, OUT, and SELF calls follow a
similar pattern as that of ALL calls. In other words, for any
tower, the volume of incoming, outgoing and SELF calls are
correlated to the overall tower-level activity (i.e. ALL calls).
We further observe that IN and OUT call volumes are more
similar to each other than SELF calls. All in all, call volumes

or tower-level activities in general vary significantly among
different towers.
We now investigate the proportions of SELF, IN and OUT
calls over ALL calls at the towers. In Figure 2, we fix
the rank of towers the same as in Figure 1 and plot the
distributions of call proportions – SELF over ALL (% of
SELF calls), IN over ALL (% of incoming calls), and OUT
over ALL (% of outgoing calls). We observe that in general
SELF over ALL call ratios dominate compared to IN over
ALL and OUT over ALL call ratios, implying people tend to
make more SELF calls than IN or OUT calls. In other words,
a general trend observed across all towers is that majority
of the calls originate and terminate at the same tower. This
makes sense as most of the social connections tend to be
local to a particular region. However, Figures 1 and 2 show
no clear linear relationship between call volume distributions
and call proportion distributions. In other words, towers that
generate large volume of calls do not necessarily make a
lot of calls to themselves. To further investigate, we fix
the rank of the towers based on SELF over ALL call ratio
(decreasing order), and plot all the call ratio distributions
(see Figure 3). We observe there is still high variance in
the call proportions. For example, the SELF over ALL call
proportions vary between 30% to 55%. This implies certain
towers tend to make more SELF calls than others.
This analysis suggests that there is high variation in the
tower-level activities between towers such as the call vol-
umes, where the towers in one capital city consumes more
than 25% of such activities. Moreover, we also observe
strong dependencies between call volumes at tower levels
and human activities of either “local” or “mobile” users
around these towers. The nature of call volumes (i.e. incom-
ing/outgoing/self) also vary across towers. This is evident
by observing the diversity in call proportion distributions
among different towers.

4. Diversity in Communication Patterns

From our previous analysis, although we find that majority
of the calls originate and terminate at the same tower, we
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Figure 3: Plot similar to Figure 2, only difference being, the
x-axis is now ranked by SELF over ALL ratio (i.e. percent-
age of calls where both caller and callee both associated
with same tower).

could not obtain insights of the communication patterns3

between different towers. In this section, we focus on those
calls where the origin and destination towers are not the
same, and try to find if there are any geo-spatial factors
driving communication patterns of such non-SELF calls.
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Figure 4: Average distance of each tower with its (geo-
distance) and (call-distance) based k nearest neighbors.

4.1. Diversity in the Locality Effects

For every tower, we identify two sets of k-nearest neighbors
(kNN) using two different approaches: 1) using geo-spatial
distance, and 2) using number of calls, and refer to these sets
as G and C, respectively. To elaborate further, Gi is a set
of k nearest (or neighboring) towers that are geographically
closest to tower i; whereas Ci is a set of k destination towers
that tower i makes the most numbers of calls to. For each
of these two sets, we then calculate the average geographic

3. In the context of this paper, we refer to communication patterns as
the tendency to call a particular subset of towers with a higher probability
than the rest of the towers. For example, tower A and tower B are said
to have a similar communication pattern if both the towers make calls to
some subset of destination towers with a similar probability.

distance to tower i to compute geo-distance (gd) and call-
distance (cd). In other words, gdi =

∑
j∈Gi

dist(i, j)
/
|Gi|,

where the dist(i, j) is the distance in kilometers (KM)
between towers i and j. Since the geographic coordinates
(i.e. latitude, longitude) of the towers are known a priori,
we use the Haversine formula [7] to compute the required
geographic distance between these two towers. Similarly, we
also compute cdi =

∑
j∈Ci

dist(i, j)
/
|Ci|. In this paper,

value of k is set to be 5. We compute both gd and cd for
all the towers, and show the results in Figure 4. We fix
the rank of towers (i.e. across x-axis) as obtained by the
geo-distance gd for all towers, largest to smallest. We can
clearly see that overall there is slight level of correlation
between both gd and cd for certain set of towers. In other
words, certain localities (or towers) tend to make more calls
to towers that are regionally closer to them, there by showing
some “locality” effect. However this is not applicable across
all the towers, and this diversity in locality effects can be
seen as fluctuations in the plot corresponding to call-distance
in Figure 4. While this maybe a side effect to choosing k=5,
our objective was to show the diversity in these relations.
However this gives us an intuition of the existence of certain
communities of people (i.e. collection of towers) that tend
to talk with each other more than others. In Section 5, we
briefly describe an approach to identify such communities,
and also show the results obtained from this dataset.
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Figure 5: Geographical map of towers classified using geo-
spatial neighborhood tower-densities (or geo-distance).

4.2. Diversity in Spatial Tower-Densities

By focusing only on the geo-distance plot (i.e. red line) in
Figure 4, we make another observation that relates to the
diversity in spatial (or neighborhood) tower-densities. The
first few towers (∼1 to 150) have very high geo-distance,
which indicates such regions have very low regional tower-
density. Going beyond the 150th tower, we see a steady
yet slowly decreasing geo-distance from towers 151 to 650.
Then there is a drop from ∼650-to-800th tower, and finally
the geo-distance is at its lowest beyond the 800th tower. This
last segment corresponds to regions where the tower density



is at its highest, which most likely represents the urban
(or metropolitan) areas of the country. To validate this, we
roughly come up with 4 contiguous ranges of geo-distance
to classify the towers into 4 categories based on their geo-
spatial tower-density – low, medium, high, very high. We
then map all the towers on a geographical map labeled
with their category in Figure 5. Further investigation of the
geographic properties and the obtained clusters verifies our
earlier observations that the towers with very high tower
density represent the biggest (or the most populated) urban
cities. Towers labeled as high (i.e. green dots) represent
the suburban areas surrounding the bigger cities, as well
as some of the tier-2 cities. Towers with blue dots (labeled
as medium) represent the rural and transit areas. Finally
red towers represent the remotest parts of the nation. In a
nutshell, this analysis suggests that the diversity in tower-
density highly depends on geographic-specific properties
such as human population, user demands. However, it is
not clear about the effect of such varying levels of tower-
density on the call volume (or tower-level activities). In the
next subsection, we dwell in this particular direction.
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Figure 6: log-log scatter plot showing the relation between
a tower’s location and its average in-out calls.

4.3. Spatial Diversity in Pairwise-Call Volumes

Next, we consider volume of calls between towers, i.e.
pairwise-calls, and investigate its relation with the distance
between the paired towers. For this part of the analysis,
we pair every tower with 5 other towers that they mostly
interact with. We use the same Haversine formula [7] to
compute distances between towers. Figure 6 shows the
scatter plot (log-log scale) of this relation. Note, the y-axis
is the inverse of the pairwise-distance. We observe certain
pairs of towers that are geographically close to each other
generate large call volumes. At the same time, there are
some other pairs of towers that are located relatively less
closer also seem to generate large call volumes. Nonetheless,
we do see certain patterns emerging from the scatter plot.
However, high number of towers coupled with the observed
spatial diversity in pairwise-call volumes makes it difficult
to extrapolate the relations.
In this section, we observe that there exist locality effects
in communication patterns among towers along with some

diversity. Our analysis also show that the tower density
across the nation has a close relationship regional geo-
graphic features such as whether it is a metropolitan area or
a transit region. Last but not the least, irrespective of two
towers being geographically close or relatively far, for the
both cases we find them to have the ability to generate large
call volumes.

5. Extracting Regional Communities

So far, we empirically analyzed the dataset to show that al-
though most of the calls are local to towers, we still observe
groups of nearby (or neighboring) towers communicate with
each other more than the rest of the towers. In other words,
there are communities (or collection of towers) that tends
to communicate more among themselves and at the same
time show similar behavior to communicate with others.
However, the size or structure of such communities vary.
For example, earlier we tried using kNN, however fixing the
value of k to be a constant does not work well due to the
diversity in data. Although not shown, we find that linear-
dimension reduction techniques such as PCA are ill-suited
for this dataset as the number of components with significant
eigenvalues is very high (greater than 80) suggesting the data
is high dimensional and diverse (thus, non-linear) in nature.
Hence, there is a need to account for this diversity and come
up with an approach to identify communities (or clusters)
of towers having similar communication patterns.

XXXXXXXXOrigin
Dest. tower A tower B

tower A SELF calls A to B calls
tower B B to A calls SELF calls

Table 1: Origin-Destination (OD) Matrix Representation

We combine some of the popular algorithms with state-of-
the-art machine learning tools to develop an approach to
account for such non-linearity in data and extract clusters
(or “latent” patterns) arising from such datasets. The key
idea is the following: Instead of directly working on the
original dataset, we construct an origin-destination (OD)
matrix such that each row represents a data point (say,
the origin tower) and treat every column as a feature (or
destination). Therefore, a matrix of size n×m represents n
data points, where each data point is a vector of m features
(see Table 1). Each cell in the matrix corresponds to the
number of calls from origin an tower (i.e. row index) to
some destination (i.e. column index). The diagonal elements
denote SELF calls. This matrix represents an empirical dis-
tribution to account for the highly diverse data distributions
in the OD matrix. From such distributions, we then derive
a new (now symmetric) similarity matrix of size n × n.
This amounts to transforming the data points in original
OD matrix into a kernel space via a (non-linear) Gaussian
kernel function. We apply the Laplacian Eigenmap method
to cluster data points and extract patterns or “clusters” lying
in certain lower-dimensional (non-linear) sub-manifolds. To
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Figure 7: Clustering results of towers show formation of regional communities in communication pattern across the nation.
However, one of the pattern (red colored towers) travel across the entire nation. (best viewed in color)

demonstrate the inherent non-linearity of these latent clus-
ters and to help interpret the results, we visualize the data
points by projecting them into a 2-dimensional space using
t-SNE method [8]. We leave a more detailed analysis and
theoretical-based discussion about this approach as part of
a longer version of this paper.

Figure 7a shows the result of applying this approach on
the CDR dataset. We found a total of 21 clusters, where
each cluster contained a certain subset of towers. Note, our
approach will put two towers in the same cluster if both
the towers have a similar call-distribution to destination
towers. Therefore, the extracted clusters represent 21 distinct
communication patterns in the dataset. All the figures are
best viewed in color – each color represents a cluster. Except
for the cluster denoted using red color ( ), all other clusters
represent regional communication patterns of varying local-
ities and sizes. It is interesting to see such results emerge,
especially when no geographic information was explicitly
mentioned in the input to our pattern extraction methodol-
ogy. These regional communication patterns capture social
interactions and human mobility in this African nation. As
clearly shown in Figure 7a, users tend to interact (in this
case, call or message) with others in certain geographical
regions. In fact, further in-depth analysis suggests vast swath
of the nation (outside the capital city) can be divided into
a few distinct communication “zones” where users tend
to interact more with others in the same zone, or when
interacting with users outside their zones, they tend to have
similar communication patterns. We zoom into the results of
the capital city (see Figure 7b). It is interesting to observe
that the capital city is itself dominated by five distinct
communication “zones”: cluster C ( ) which is the largest,
cluster B ( ), cluster A ( ), cluster E ( ) and cluster D ( )
which are very close to each other. Further investigation of
the geographical features of these clusters reveal that in fact
the capital city consists of a large mainland area (where most
towers in clusters A, B and C reside) and two (connected)
islands separated from the mainland by a bay. Clusters D

and E have distinct communication patterns from cluster A,
B and C, as residents in the islands also tend to work on
the islands; hence most calls are confined within the islands.
In contrast, clusters A, B and C represents call patterns not
only among residents within the capital city, but also that
these residents tend to interact with users residing in many
other surrounding areas. Finally, the towers in red-colored
cluster ( ) are sparsely distributed across the nation, most of
which have relatively low overall call volumes and many are
located along major transportation networks. This suggests
towers in the red cluster captures call activities of users in
transit across the nation.

6. Conclusion

In this paper, we presented our detailed analysis on a na-
tionwide large CDR dataset enriched with both source and
destination cellular tower information of over 500 million
calls and found some interesting patterns. We analytically
observed that there is a wide diversity in call volume patterns
and there exist a strong dependencies between call volumes
at tower levels and local (or mobile) users around these
towers evident from call proposition distribution among
different towers. We also found the diversity in communica-
tion patterns in terms of locality and regional effects along
with variation in tower density dominated by urban areas
across the nation. Unraveling patterns from such an enor-
mous dataset coupled with diversity constitutes a bigdata
challenge. To address this problem, we provide structure to
the data by constructing origin-destination (OD) matrix and
employed advance machine learning tools (Laplacian Eigen-
maps and t-SNE) to find, and also importantly understand,
the hidden patterns from the data. Our main results reveal
the existence of regional communication patterns of varying
localities and size in cellular network, out of which one
spanned across the entire nation. As a part of future work,
we plan to make our approach more general by showing
its efficacy in different application domains by accounting



datasets which do not semantically fit within our notion of
origin-destination (OD) matrix structure.
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